Blender 3D: Noob to Pro/Advanced Tutorials/Blender Scripting/Object, Action, Settings

From Wikibooks, open books for an open world
< Blender 3D: Noob to Pro
Jump to: navigation, search

Contents

Blender 3D: Noob to Pro[edit]

BlenderWikiBookCover

About This Book[edit]

Blender 3D: Noob to Pro is a product of shared effort by numerous team members and anonymous editors. Its purpose is to teach people how to create three-dimensional computer graphics using Blender, a free software application.


This book is intended to be used in conjunction with other on-line resources that complement it:

While you can learn simply by reading the book, you'll get more out of the tutorials if you follow along. In order to do this, you'll need access to a computer with Blender installed. You can download Blender from the Blender Foundation's website; more detailed instructions are in the first module.

Note:

Version compatibility: Blender is under continual development, and some of the following tutorials were written for older versions and have not (yet) been updated to the current version. In particular, major changes in the user interface and scripting API took place beginning with the 2.5x series. If you find outdated content, feel free to edit as required to bring it up to date.

  Version-specific content should be tagged with a note that looks like this:

Overview[edit]

The core of this book is a series of tutorials that increase in complexity, with later tutorials building on the preceding ones. While experienced users can skip ahead, beginners are urged to proceed through the tutorials in sequence.

The tutorials in the core series are grouped into four units:

  1. Background — a basic orientation regarding:
    • computer graphics
    • the Blender user interface (UI)
  2. Basic Modeling and Shading — basic techniques for building and rendering 3D models
  3. Broadening Horizons
    • alternative modeling and rendering techniques
    • introductions to lighting, animation, and game creation
  4. Taking Off
    • scripting
    • advanced techniques for modeling, animation and game creation

Each unit is subdivided into sections, which are made up of modules.

Three appendices are also provided:

  • Reference Material — including:
  • General Advice — tips to help you get the most out of Blender
  • Miscellaneous Tutorials — tutorials that aren't part of the core series


You Can Help!

Click "show" for details.

You are strongly encouraged (read as begged) to contribute to this book! There are many things you can do to help:

  • edit existing modules (to correct errors, improve the writing, or make additions)
  • add new modules (tutorials or reference material)
  • upload new images (screen shots or sample renders)
  • join the team responsible for this WikiBook

How to Edit a Module

To edit any wiki page (including this one):

  1. Click on the Edit tab at the top of the page.
  2. Make your change in the large text box.
  3. Type an explanation of your change in the Edit summary text box below.
  4. Click on the Show preview button below the edit summary to preview your change.
  5. If you're satisfied with the result, click on the Save page button.

Your contribution will be reviewed before it is officially published.

Things you shouldn't add to modules:

  • external links that are not directly related to the module
  • comments or questions regarding the text

To ask questions and make comments about any module:

  1. Click on the Discussion tab at the top of the page. This will take you to the corresponding talk page. Note that the talk page name begins with the "Talk:" prefix.
  2. If the topic of your question or comment is under discussion, edit the relevant section.
  3. If it's a new topic, click on the Add topic tab at the top of the talk page to start a new discussion.
  4. Sign your message by typing ~~~~ at the end. (This will expand to your username and the date.)
  5. Remember to save your edit when you're done!
  6. To return to the WikiBook, click on the Book tab at the top of the talk page.

How to Add a Module

To add a module (such as a tutorial or reference page) to this book:

  1. Edit the Table of Contents section (below) and add a list item with a descriptive wikilink. (If you're creating a tutorial and are unsure where it belongs, put it in the Miscellaneous Tutorials section.)
  2. After saving your edit, follow the redlink to create the module and begin adding content to it.
  3. To make it easy to read the book in sequence, each module should have navigation links to the previous module and the next module. Provide these links by transcluding the NAV template at the top and bottom of the page, as shown on the demo page. (If you expect the module to be moved elsewhere in the sequence, you can skip this step.)
  4. Preview your work. When you're satisfied with it, use the Save page button to add your new module to the wiki.
  5. If you provided navigation links, update the NAV templates on the previous and next modules, if they exist.
  6. If you didn't provide navigation links, please ask someone to insert your new module in an appropriate place. One way to do this would be to create a talk page for your new module and type your request there.

Images

Images are a vital part of Blender tutorials. They clarify instructions, provide a point of reference, and improve the teaching process. However, if the image's copyright is not attributed correctly, we must remove it. This can make a once-great tutorial useless. Even if you believe you know what copyright to use, please check the proper Blender images copyright page to see how and where you should add copyright information. Please make sure every image you use is not copyrighted or that you have permission to use it.

Before uploading an image:

  • Search Wikimedia Commons or look in the appropriate Commons category to see if the image you want to use already exists. (Uploading duplicate images is wasteful.)
  • Before uploading a general image (such as an icon or button) or if you want an image to use as an example, look in our image portfolio. Remember to attribute the work of others.

If you use a Commons image in this WikiBook, please use one of the categories shown in the templates on proper Blender images copyright to make it visible from the category links in the image portfolio.

How to Join the Team

If you want to join our WikiBook team, go to the team page for information and advice.


Table of Contents[edit]

Unit 1: Background[edit]

Unit 2: Basic Modeling and Shading[edit]

Unit 3: Broadening Horizons[edit]

Unit 4: Taking Off with Advanced Tutorials[edit]

Appendices[edit]

Reference Material[edit]

Advice[edit]

General advice:

Performance tips (for making Blender run faster):

Miscellaneous Tutorials[edit]

This is our attic, mostly tutorials that could be useful to some extent if they would be revamped completely, but are of little use at the moment. If you can contribute to some of them, go ahead and rewrite them to your liking!

Wikibook Development Stages
Sparse text 0% Developing text 25% Maturing text 50% Developed text 75% Comprehensive text 100%

Additional Resources[edit]



Please add {{alphabetical}} only to book title pages.

Unit 1: Knowing Before Making[edit]

Blender is a powerful and complex 3D modeling and rendering package. Before you can use it effectively to make things, you need to know a few things about how it works:

  • the process of 3D modeling and rendering (what Blender does)
  • some rudiments of 3D analytic geometry (axes and coordinates)
  • orthographic and perspective views of a 3D object
  • local coordinate systems and child objects
  • the fundamentals of Blender's user interface (hotkeys, windows, and menus)
  • how to view a 3D scene from different vantage points (in Blender)

This unit is devoted entirely to this sort of background knowledge. You won't create your first Blender model until the next unit.

Knowing this, you might be tempted to skip ahead. Depending on your background, that may or may not work. For instance, if you've used other 3D graphics packages, you might be able to skim (or skip) ahead as far as the user interface tutorial. But if there's any doubt, please proceed through the tutorials in sequence.

Blender is not the kind of software you can launch into and grope about until you find your way. It's not like exploring an unfamiliar city. It's more like flying a spaceship. If you hop into the pilot's seat without knowing the fundamentals, you'll be lucky to ever get off the ground, and it'd take a miracle for you to reach your destination safely.

A Word about Jargon[edit]

Like any subject, 3D modeling has its own jargon: terminology specific to the subject and ordinary words that have special meanings in the context of computer graphics.

In this book, important new words are highlighted on first appearance and defined soon after. If you suspect you've missed (or forgotten) the meaning of a word, try looking it up in the Glossary.

Things You'll Need[edit]

In order to work through the tutorials, you'll need access to a computer that has Blender installed (download the latest stable release).

Depending on what is installed on your system, you may also need the appropriate Python installation. Each version of Blender works with only one specific version of Python, which is generally included in the download.

Blender version Python version
2.49 2.6
2.5x 3.2
2.6 3.3
2.76 3.4
2.77 3.5
2.78 3.5
2.79 3.5
Installation instructions

Since Blender is open-source software, you can download the source code and build it yourself, but it's easier to download a pre-built install package. Install packages are provided for each supported operating system:

  • Microsoft Windows (32-bit and 64-bit)
  • Linux (32-bit and 64-bit x86)
  • Apple Mac OS X (PowerPC and Intel)
  • FreeBSD (32-bit and 64 bit)
  • Solaris
  • Irix

Many Linux distributions have Blender available in their package repositories, though it may be a slightly older version. You can use your system's package manager to download and install the package.

Windows users get to choose between an executable installer ("setup wizard") and a ZIP archive.

After the installation process is finished, Blender should appear in the Graphics section of your desktop environment application menu.

You may also want to download a 2D image editor, such as GIMP ([1]), Paint.NET ([2]), or Photoshop. For viewing video files, you may want to install VLC ([3]) media player.

It's a good idea to have pencil and paper handy for sketching and taking notes. There's a lot to absorb. Taking notes as you go will pay dividends later.

Where to Go for Help[edit]

If you get stuck, you can ask for help from other Blender users in the appendices.

Additional Resources[edit]

Many modules have a section like this at the bottom, listing websites with information on the topics covered in the module.

What Blender Can Do[edit]

In this module, you'll learn what Blender does, both in terms of the product (images) and the process (3D modeling).


Blender is a free software package for authoring "three-dimensional" (3D) graphics (also known as computer graphics or “CG”), including still images, games, and video.

While the end-product of most Blender projects is a two-dimensional (2D) raster image on a flat surface (be it a monitor, movie screen, or sheet of paper) except for Head Mounted Virtual Reality applications, the images are said to be "3D" because they exhibit the illusion of depth. In other words, someone looking at the image can easily tell which parts are meant to be closer and which are farther away.

An Example[edit]

Here's a realistic still image that was authored with Blender.

"A Lonely House", by Mayqel

Look closely at the building.

  • Because it is obscured by the building, you can tell that the tree-lined hillside is behind the building instead of vice versa.
  • The way the top and bottom edges of the front wall appear to converge toward the base of the tree allow you to judge the angle between the front wall and your viewpoint.
  • Your brain interprets dark portions of the wall as shadows, allowing you to estimate where the light is coming from, even though the sun is outside the frame of the image.

While an illusion of depth can be authored by hand with 2D graphics software (or a paintbrush!), Blender provides a much easier way.

It's likely that the lonely house never existed outside of the artist's mind. Instead of building a big set on a rural lot in Germany, waiting for the right light, and photographing it, the author built a scene in a virtual 3D world—one contained inside a computer. This is called CGI (Computer Generated Imagery). He or she then used Blender to render the scene (convert it into a 2D image). You can view more of what Blender can do at the Blender gallery: http://www.blender.org/features/

Steps in the 3D Production Process[edit]

To produce an image like the one above involves two major steps to start with:

  • Modelling, which is the creation of your miniature 3D world, also known as a model or scene. This involves defining the geometry of the objects, making it look like they are made out of particular materials, setting up the lighting, and defining a camera viewpoint.
  • Rendering, which is the actual generation of the image of the world from the viewpoint of the camera (taking a “photograph” of the scene, if you like), for your audience to enjoy.

3D is often used to produce not just single still images, but animations as well. This requires some additional steps:

  • Rigging — setting up a rig, namely a way of deforming (changing the shape of) a character in various repeatable ways to convincingly mimic joint movements, facial expressions and other such actions of real-life people or animals.
  • Posing — choreographing the positions of the objects and their parts in the 3D scene over time, using the previously-created animation rigs
  • Rendering now involves creating a whole sequence of frames representing movement over time, rather than just a single still frame.

But that’s not all. There are frequently additional processes to embellish the results of the above, to make them look more realistic:

  • Sculpting — a more organic form of modelling objects by shaping them as though they were made out of clay. This produces more complicated, irregular shapes which mimic real objects found in nature, as opposed to clean, simple, geometrical ones which mostly only exist in the world of mathematics.
  • Texture painting — You’re probably familiar with programs that let you paint an image on a 2D digital canvas. Such programs are commonly used in 3D production, to create textures which are “wrapped” around the surfaces of 3D objects to give them a more interesting appearance. 3D programs also often allow direct painting on the surfaces of those objects, so the effect of the design can be observed immediately, instead of having to go through a separate paint-on-a-flat-surface-then-wrap sequence of steps.
  • Physical modelling — simulating the behaviour of real-world objects subject to real-world forces, for example hard balls colliding, soft cloth draping itself over an obstacle under gravity, water flowing and pouring. Mathematical formulas are available for these that give results very close to real life, all you need is the computing power to calculate them.
  • Motion capture, or mocap: producing convincing animations, particularly ones that look like the movements of real people (walking, running, dancing etc) can be hard. Hence the technique of capturing the motions of live actors, by filming them with special markers attached to strategic points on their bodies, and doing computer processing to track the movements of these markers and convert them to corresponding movements of an animation rig.
  • Compositing — this is where 3D renders are merged together with real photographic/live-action footage, to make it look like a rendered model is in the middle of a real-world scene, or conversely a real live actor is in the middle of a rendered scene. If done with proper skill, in particular due care to matching the effects of lights and shadows, the viewer becomes unable to tell what is real and what is not!

And just to add another complication to the mix, there are two kinds of rendering:

  • Real-time rendering is rendering that has to happen under tight time constraints, typically for interactive applications like video gaming. For example, most gamers nowadays consider that the screen has to be updated 60 times per second in order to render smooth motion and respond quickly enough to player actions. These time constraints impose major limitations on the kinds of rendering techniques that can be used.
  • Non-real-time rendering is where the time constraints are not so tight, and quality is the overriding factor. For example, when producing a single still frame, it may not matter so much that it takes minutes or hours to do so, because the beauty and detail of the final image is worth it. When rendering a Hollywood-quality movie, it may still take hours per frame, but the use of a renderfarm of hundreds or thousands of machines, all working on different frames at the same time, allows the entire sequence to complete in just a few weeks.

But wait, there’s more: There are also some areas, which might be considered to be stepping outside of traditional 3D production work, where Blender provides functionality:

  • Video editing — having rendered your animation sequences and shot your live-action footage, you will want to combine them in a properly-timed linear sequence to tell a coherent story.
  • 3D printing — Though still in its early days yet, many people are already experimenting with creating objects using 3D printers. The shape data may be obtained from real objects with 3D scanning, or it may be created from scratch using 3D modelling, or you can even combine both processes.

Blender is a capable tool for every single one of these processes. There’s quite a lot there, isn’t there? But don’t be too intimidated: this Wikibook will take things step by step, and you will be able to produce some fun stuff from early on.

Additional Resources[edit]

3D Geometry[edit]


If you haven't previously studied 3D graphics, technical drawing, or analytic geometry, you are about to learn a new way of visualizing the world, an ability that's fundamental to working with Blender or any 3D modeling tool.

3D modeling is based on geometry, the branch of mathematics concerned with spatial relationships, specifically analytical geometry, which expresses these relationships in terms of algebraic formulas. If you have studied geometry, some of the terminology will be familiar.

Coordinates And Coordinate Systems[edit]

Look around the room you’re in. The odds are it will have a cuboidal shape, with four vertical walls at right angles to each other, a flat, horizontal floor, and a flat, horizontal ceiling.

Now imagine there’s a fly buzzing around the room. The fly is moving in three-dimensional space. In mathematical terms, that means its position within the room at any given moment, can be expressed in terms of a unique combination of three numbers.

There are an infinite number of ways —coordinate systems— in which we could come up with a convention for defining and measuring these numbers, i.e. the coordinates. Each convention will yield different values even if the fly is in the same position. Coordinates only make sense with reference to a specific coordinate system! To narrow down the possibilities (in a purely arbitrary fashion), let us label the walls of the room with the points of the compass: in a clockwise direction, North, East, South and West. (If you know which way really is north, feel free to use that to label the walls of your room. Otherwise, choose any wall you like as north.)

Consider the point at floor level in the south-west corner of the room. We will call this (arbitrary) point the origin of our coordinate system, and the three numbers at this point will be '"`UNIQ--postMath-00000001-QINU`"'. The first of the three numbers will be the distance (in some suitable units, let’s say meters) eastwards from the west wall, the second number will be the distance north from the south wall, and the third number will be the height above the floor.

Each of these directions is called an axis (plural: axes), and they are conventionally labelled X, Y and Z, in that order. With a little bit of thought, you should be able to convince yourself that every point within the space of your room corresponds to exactly one set of '"`UNIQ--postMath-00000002-QINU`"' values. And conversely that every possible combination of '"`UNIQ--postMath-00000003-QINU`"' values, with '"`UNIQ--postMath-00000004-QINU`"', '"`UNIQ--postMath-00000005-QINU`"' and '"`UNIQ--postMath-00000006-QINU`"' (where '"`UNIQ--postMath-00000007-QINU`"' is the east-west dimension of your room, '"`UNIQ--postMath-00000008-QINU`"' is its north-south dimension, and '"`UNIQ--postMath-00000009-QINU`"' is the height between ceiling and floor) corresponds to a point in the room.

The following diagram illustrates how the coordinates are built up, using the same colour codes that Blender uses to label its axes: red for X, green for Y and blue for Z (an easy way to remember this if you're familiar with RGB is the order -- Red X, Green Y, Blue Z). In the second picture, the x value defines a plane parallel to the west wall of the room. In the third picture, the y value defines a plane parallel to the south wall, and in the fourth picture, the z value defines a plane parallel to the floor. Put the planes together in the fifth picture, and they intersect at a unique point.

BlenderCoordinates.png

This style of coordinate system, with the numbers corresponding to distances along perpendicular axes, is called Cartesian coordinates, named after René Descartes, the 17th-century mathematician who first introduced the concept. Legend has it that he came up with the idea after watching a fly buzzing around his bedroom!

There are other ways to define coordinate systems, for example by substituting direction angles in place of one or two of the distance measurements. These can be useful in certain situations, but usually all coordinate systems in Blender are Cartesian. However, in Blender, switching between these coordinate systems is simple and easy to do.

Negative Coordinates[edit]

Can coordinate values be negative? Depending on the situation, yes. Here we are only considering points within our room. But suppose instead of placing our origin in the bottom southwest corner, we put it in the middle of the room, halfway between the floor and ceiling. (After all, it is an arbitrary point, we can place it wherever we like, as long as we agree on its location.) If the X-coordinate is the distance east from the origin, how do we define a point west of the origin? We simply give it a negative X-coordinate. Similarly, points north of the origin have a positive Y-coordinate, those south of it, have negative Y-coordinates. Points above the origin have a positive Z-coordinate, those below it, a negative Z-coordinate.

Handedness Of Coordinate Systems[edit]

It is conventional for most Cartesian coordinate systems to be right-handed. To understand this, hold the thumb, index finger and middle finger of your right hand perpendicular to each other:

Figure 1: The three axes form a right-handed system

Now orient your hand so your thumb points along the X-axis in the positive direction (direction of increasing coordinate numbers), your index finger along the positive Y-axis, and your middle finger along the positive Z-axis. Another way of looking at it is, if you placed your eye at the origin, and you could see the three arrows pointing in the directions of positive X, positive Y and positive Z as in Figure 1, the order X, Y, Z would go clockwise.

Figure 2: Another view of right-handed system

Another way to visualize this is to make a fist with your right hand, with your curled fingers towards you. Stick out your thumb directly to the right (X). Now aim your pointer finger straight up (Y). Finally, make your middle finger point toward yourself (Z). This is the view from directly above the origin.

Axes Of Rotation[edit]

Consider a spinning sphere. Every point on it is moving, except the ones along the axis. These form a motionless line around which the rest of the sphere spins. This line is called the axis of rotation.

More precisely, the axis of rotation is a point or a line connecting points that do not change position while that object rotates, drawn when the observer assumes he/she does not change position relative to that object over time.

Conventionally, the direction of the axis of rotation is such that if you look in that direction, the rotation appears clockwise, as illustrated below, where the yellow arrow shows the rotational movement, while the purple one shows the rotation axis:

RotationAxisDirections.png

To remember this convention, hold your right hand in a thumbs-up gesture: Blender3D DirectionOfRotation.png If the rotation follows the direction of your curled fingers, then the direction of the axis of rotation is considered to be the same as the direction which the thumb is pointing in.

This gesture is a different form of the right-hand rule and is sometimes called the right-hand grip rule, the corkscrew-rule or the right-hand thumb rule. From now on we will refer to it as 'the right-hand grip rule'.

When describing the direction of a rotating object, do not say that it rotates left-to-right/clockwise, or right-to-left/counterclockwise. Each of these on their own are meaningless, because they're relative to the observer. Instead of saying this, find the direction of the axis of rotation and draw an arrow to represent it. Those who know the right-hand grip rule will be able to figure out what the direction of rotation of the object is, by using the rule when interpreting your drawing.

Additional Resources[edit]

Coordinate Transformations[edit]


Coordinate Transformations[edit]

A transformation is any operation that changes coordinate values in some way. For example, if you pick up an object and move it to a different place in the room without changing its orientation, then the coordinates of each point on the object relative to the room are adjusted by an amount that depends on the distance and direction between the old and new positions. This is called a translation transformation.

Object at original location
Object translated to new position


Simply turning the object without moving it from its original location is called rotation.

Object rotated 45°


If the object were to get bigger or smaller, that is a scaling transformation. In the real world, only a few objects can be scaled in this way. For example, a balloon can be inflated or deflated to a larger or smaller size, but a bowling ball cannot. Regardless of what can and can't be re-sized in the real world, any object can be scaled (re-sized) in the world of computer graphics. Scaling may be uniform, i.e. apply equally in all dimensions, or non-uniform.

Object uniformly scaled to 50% of original size
Object scaled vertically to 50% of original size


Linear Transformations[edit]

The main types of coordinate transformations we’re concerned with are called linear transformations. Lines that were straight before the transformation remain straight. i.e. they do not become curved. For example, the following diagram illustrates three linear transformations applied to the square in the center: Clockwise from the left, a shear or skew, a scale, and a rotation, plus one non-linear transformation that causes two sides of the box to become curved.

LinearTransformations.svg

Multiple Transformations[edit]

It is possible to concatenate or compose a series of transformations. The resulting transformation can do many things in one operation — translation, rotation, scaling etc. However, the order of composition of the component transformations becomes important. In general, transformations are not commutative. For example, compare the result of moving our model some distance along the Y axis followed by rotating it about the X axis (If this doesn't make sense, consider that the axes are fixed, they aren't moving with the object. More on that later Global and local coordinates):

Translation followed by rotation

versus the result of doing the rotation first:

Rotation followed by translation

In some instances, the three forms of transformation may be applied on a single object concurrently. Such a feature exists in Blender and is normally implemented in creating animations. For example, you can decide to pick up the object (first transformation - translation), twist it (second transformation - rotation), and, in a 3D modeling environment, increase the size of the object (third transformation - scaling).

Inverse Transformations[edit]

Often there is a need to find the inverse of a transformation. That is, a transformation that has the opposite effect. For example, a rotation of +45° about the X axis is undone by a rotation of -45° around the same axis.

Inverses have many uses, one of which is to simplify the construction of certain kinds of transformations.

For example, it is easy to construct a rotation transformation about the X, Y or Z-axis of the coordinate system. But what about a rotation of Θ° around an arbitrary axis? This can be made out of the following parts:

  • a translation that makes the rotation axis pass through the origin.
  • rotations about the Y and/or Z axes, as appropriate, so the rotation axis lies along the X axis.
  • a rotation of Θ° about the X axis.
  • the inverse of the rotations that aligned the rotation axis with the X axis.
  • the inverse of the translation that made the rotation axis pass through the origin.

Most of the transformations we deal with in 3D modelling have an inverse, but not all. See the next section for some that don’t.

Projections[edit]

Most of our display and output devices are not three-dimensional. Thus, three-dimensional images need to be projected onto a two-dimensional surface (like a display screen or a printed page) before we can see them.

There are two main ways to perform such projections. One is orthographic projection, where parallel lines are drawn from all points of the three-dimensional object until they intersect a plane representing the display surface:

OrthographicProjection.svg

More on orthographic projections

The other way is perspective projection, where the lines drawn are not parallel, but intersect at a point representing the location of the eye of the viewer:

PerspectiveProjection.svg

Projections are also linear transformations. But since they take a three-dimensional space and flatten it onto a two-dimensional surface, some information is lost. Those transformations are non-invertible i.e. they cannot be undone, at least in a unique way as the depth information is gone.

More on perspective projections

The mathematics of perspective were first worked out in the 11th century by Alhazen, and used to great effect by the Italian Renaissance painters four hundred years later.

--

Orthographic Views[edit]

Blender provides two different ways of viewing 3D scenes:

  • orthographic view

and

  • perspective view.

In order to use them effectively, you need to understand their properties.

An orthographic view (or projection) of a 3D scene is a 2D picture of it in which parallel lines appear parallel, and all edges perpendicular to the view direction appear in proportion, at exactly the same scale.

Orthographic views are usually aligned with the scene's primary axes. Edges parallel to the view axis disappear. Those parallel to the other primary axes appear horizontal or vertical. The commonly used orthographic views are front, side, and top views, though back and bottom views are possible.

Uniform scale makes an orthographic view very useful when constructing 3D objects, not only in computer graphics, but also in manufacturing and architecture.

Here's one way to think about the orthographic view:

Imagine photographing a small 3D object through a telescope from a very great distance. There would be no foreshortening. All features would be at the same scale, regardless of whether they were on the near side of the object or its far side. Given two (or preferably three) such views, along different axes, you could get an accurate idea of the shape of the object, useful for "getting the feel" of objects in a virtual 3D world where you're unable to touch or handle anything!

Example[edit]

Here is a drawing of a staircase:

An isometric view of a staircase

and here are three orthographic views of the same staircase, each outlined in red:

Figure 1: Orthographic views of a staircase

The views are from the front, top, and left. Dashed lines represent edges that, in real life, would be hidden behind something, such as the left wall of the staircase. (Think of each view as an X-ray image.)

The leading edges of the steps are visible in both the front and top views. Note that they appear parallel and of equal length in 2D, just as they are in 3D reality.

Additional Resources[edit]

Perspective Views[edit]

As you know, the main reason for modeling 3D objects in Blender is to render images that exhibit the illusion of depth.

Orthographic views are great for building a house, but seriously flawed when it comes to creating realistic images of the house for use in a sales brochure. While a builder wants blueprints that are clear and accurate, a seller wants imagery that's aesthetically pleasing, with the illusion of depth. Blender makes it easy to use tricks like perspective, surface hiding, shading, and animation to achieve this illusion.

How does perspective work?

The essence of perspective is to represent parallel edges (in a 3D scene) by edges (in the 2D image) that are not parallel. When done correctly, this produces foreshortening (nearby objects are depicted larger than distant ones) and contributes to the illusion of depth.

Perspective is challenging to draw by hand, but Blender does it for you, provided you give it a 3D model of the scene and tell it where to view the scene from.

If you're confident you understand perspective, you can skip the rest of this module and proceed to the "Coordinate Spaces in Blender" module.


Note:

Blender only does 3-point perspective, not 1-point or 2-point.

 


One-point Perspective[edit]

Figure 1: 1-Point Perspective.

Drawing classes teach various kinds of perspective drawing: one-point perspective, two-point perspective, and three-point perspective. In this context, the word "point" refers to what artists call the vanishing point.

When you're looking at a 3D object head-on and it's centered in your view, that is an example of one-point perspective.

Imagine looking down a straight and level set of train tracks. The tracks appear to converge at a point on the horizon. This is the vanishing point.

The image on the right is a 2D image of a cubic lattice or framework. Like any cube, it has six square faces and twelve straight edges. In the 3D world, four of the edges are parallel to our line-of-sight. They connect the four corners of the nearest square to the corresponding corners of the farthest one. Each of these edges is parallel to the other three.

In the 2D image, those same four edges appear to converge toward a vanishing point, contributing to the illusion of depth. Since this is one-point perspective, there is a single point of convergence at the center of the image.

Two-point Perspective[edit]

Figure 2: 2-Point Perspective.

Now the cube is at eye level, and you're near one of its edges. Since you're not viewing it face-on, you can't draw it realistically using one-point perspective. The horizontal edges on your left appear to converge at a point on the horizon to the left of the cube, while those on the right converge to the right. To illustrate the cube with a good illusion of depth, you need two vanishing points.

Three-point Perspective[edit]

3-Point Perspective.

Now imagine you're above the cube near one of its corners. To draw it, you'd need three vanishing points, one for each set of parallel edges.

From that perspective, there are no longer any edges which appear parallel. The four vertical edges, the four left-right edges, and the four in-out edges each converge toward a different vanishing point.

Additional Resources[edit]

Coordinate Spaces in Blender[edit]

Figure 1: Objects in a three dimensional space. In the center of the coordinate system is the origin of the global coordinate system.

We'll start looking at how 3D scenes are represented in Blender.

As was explained in the "3D Geometry" module, Blender represents locations in a scene by their coordinates. The coordinates of a location consist of three numbers that define its distance and direction from a fixed origin. More precisely:

  • The first (or x-) coordinate of the location is defined as its distance from the YZ plane (the one containing both the Y and Z axes). Locations on the +X side of this plane are assigned positive x-coordinates, and those on the -X side are given negative ones.
  • Its second (or y-) coordinate is its distance from the XZ plane, with locations on the -Y side of this plane having negative y-coordinates.
  • Its third (or z-) coordinate is its distance from the XY plane, with locations on the -Z side of this plane having negative z-coordinates.

Thus the origin (which lies at the junction of all three axes and all three planes) has the coordinates (0, 0, 0).

Global and local coordinates[edit]

Blender refers to the coordinate system described above as the global coordinate system, though it's not truly global as each scene has its own global coordinate system. Each global coordinate system has a fixed origin and a fixed orientation, but we can view it from different angles by moving a virtual camera through the scene and/or rotating the camera.

Global coordinates are adequate for scenes containing a single fixed object and scenes in which each object is merely a single point in the scene. When dealing with objects that move around (or multiple objects with sizes and shapes), it's helpful to define a local coordinate system for each object, i.e. a coordinate system that can move with, and follow the object. The origin of an object's local coordinate system is often called the center of the object although it needn't coincide with the geometrical center of the object.

3D objects in Blender are largely described using vertices (points in the object, singular form: vertex). The global coordinates of a vertex depend on:

  • the (x, y, z) coordinates of the vertex in the object's local coordinate system
  • the location of the object's center
  • any rotation (turning) of the local coordinates system relative to the global coordinate system, and
  • any scaling (magnification or reduction) of the local coordinate system relative to the global coordinate system.

For example, the teacup in Figure 1 is described by a mesh model containing 171 vertices, each having a different set of local (x, y, z) coordinates relative to the cup's center. If you translate the cup (move it without rotating it), the only bits of the model that have to change are the global coordinates of the center. The local coordinates of all its vertices would remain the same.

Coordinates of child objects[edit]

Figure 1b: A parent serves as the source of the global coordinates for its child object. The child is the cup; the parent's orientation is shown with the colored arrows.
Animation of the above

Any object can act as a parent for one or more other objects in the same scene, which are then referred to as its children. (An object cannot have more than one direct parent, but parent objects may themselves be the children of other objects.)

If an object has a parent, its position, rotation, and scaling are measured in the parent's local coordinate system, almost as if it were a vertex of the parent. i.e. the position of the child's center is measured from the parent's center instead of the origin of the global coordinate system. So if you move a parent object, its children move too, even though the children's coordinates have not changed. The orientation and scaling of a child's local coordinate system are likewise measured relative to those of its parent. If you rotate the parent, the child will rotate (and perhaps revolve) around the same axis.

Parent-child relationships between objects make it simpler to perform (and animate) rotations, scaling and moving in arbitrary directions. In Fig. 1b the teacup is a child object of the coordinate cross on the right. That cross is itself the child of an invisible parent. (It is both a parent and child.) In the cup's local coordinate system, it is not rotating, but as the cross on the right rotates around its Z axis, it causes the cup to rotate and revolve. In real animations, it will be much easier when the character holding the cup rotates, the cup changes its position respectively.

View coordinates[edit]

Figure 2: View coordinates and Projection Plane

Taking the viewer of the scene into consideration, there is another coordinate space: the view coordinates. In Fig. 2 the viewer is symbolized by the camera. The Z axis of the view coordinates always points directly to the viewer in orthographic projection. The X axis points to the right, the Y axis points upwards (Fig. 3).

Figure 3: View coordinates in viewing direction

In fact you always work in view coordinates if you don't set it any other way*. This is particularly useful if you have aligned your view prior to modeling something, e.g. if an object has a slanted roof and you want to create a window to fit in that roof, it would be very complicated to build the window aligned to the local coordinate system of the object, but if you first align your view to the slanted roof, you can easily work in that view coordinate system.

(* In the Blender 2.6 series, the default has been changed to global coordinates. View coordinates remain as an option.)

If you work in one of the three standard views (Front/Top/Side) the alignment of the view coordinates fits the global coordinates. Therefore, it is quite natural to model in one of the standard views and many people find this the best way to model.

Normal coordinates[edit]

Figure 4: Normal coordinate spaces for faces. The normal is shown in blue.

Although Blender is a 3D program, only an objects' faces are visible. The orientation of the faces is important for many reasons. For example, in our daily lives it seems quite obvious that a book lies flat on a table. This requires the surface of the table and that of the book to be parallel to each other. If we put a book on a table in a 3D program, there is no mechanism that forces these surfaces to be parallel. The artist needs to ensure that.

The orientation of a face can be described with the help of the so-called surface normal. It is always perpendicular to the surface. If several faces are selected, the resulting normal is averaged from the normals of every single face. In Fig. 4 the normal coordinates of the visible faces are drawn.

This concept can be applied to individual points on the object, even if the points themselves have no orientation. The normal of a point is the average of normals of the adjacent faces.

The images for this tutorial were produced with Blender v2.46.

UV Coordinates[edit]

In later parts (for example, talking about textures) you will come across coordinates labelled “U” and “V”. These are simply different letters chosen to avoid confusion over “X”, “Y” and “Z”. For example, a raster image is normally laid out on a flat, two-dimensional plane. Each point on the image can be identified by X and Y coordinates. But Blender can take this image and wrap it around the surface of a 3D object as a texture. Points on/in the object have X, Y and Z coordinates. So to avoid confusion, the points on the image are identified using U and V to label their coordinates instead of X and Y. We then refer to “UV mapping” as the process of determining where each (U, V) image point ends up on the (X, Y, Z) object.

User Interface Overview[edit]

Blender's user interface (the means by which you control the software) is not particularly easy to learn. However, it has improved over time and is expected to continue doing so. The current version of the Blender software is 2.79b. You can download it from the Blender Foundation's website.

The tutorials in this section will familiarize you with the basics of the user interface. By the end of this section, you should be able to:

  • resize, split, and merge any Blender window;
  • change the type of any Blender window;
  • access user preferences;
  • access panels containing buttons and other controls;
  • change the viewpoint of a viewport.

For those new to Blender, this is a fundamental section of the book.

Advice on Customization[edit]

Blender is a complex software package with many customizable features. You can customize the user interface to assign new functions to buttons and hotkeys. In fact, you can change almost anything to suit yourself. However, this complicates the giving and following of directions. It is recommended you adhere to the default screen arrangements of Blender in order to be able to follow the remaining parts of these tutorials. Blender ships with 4 to 5 screen-content arrangements which are suitable for almost any kind of job you'll want to use it for - from creating motion and animation to making games.

We recommend leaving Blender's user interface in its "factory settings" while working through the Noob to Pro tutorials. At the very least, wait until you've mastered the basics before you customize the interface - and we know you definitely will when you master it!

Keystroke, Button, and Menu Notation[edit]

As you read through these tutorials, you will encounter cryptic codes such as  SHIFT + LMB  and Timeline → End Frame. They describe actions you perform using the keyboard and mouse. The notation used in this book comes from the standard used by the Blender community. We will try to import those standards here to facilitate our studies.

If you're reading this book online, you may wish to print this page for future reference. In addition, you can bookmark it in your browser for faster reference.

Hotkeys[edit]

A typical numpad

Most computer keyboards have number keys in two different places. A row above the letters, and in a numpad (numeric keypad) to the right of the keyboard. While many applications use these two sets of keys interchangeably, Blender does not. It assigns different functions to each set. If you're using a laptop keyboard without a separate numeric keypad, this might cause some difficulty. You'll need to use your function key to do some things. It is possible to indicate to Blender the type of keyboard you are using, but we strongly recommend you use a standard external keyboard if you use a laptop for these tutorials as it will make your studies and usage of Blender much more straightforward and enjoyable.

This book often assumes your keyboard has a numpad. If yours doesn't, consult the tutorial on Non-standard Input Devices for alternative ways to access the numpad's functions.

Notation[edit]

Notation Action or Key
 Alt  (press and hold) the Alt (Option) key
 Cmd  (press and hold) the Command or Super key (On a Windows keyboard, the key bearing the Windows logo; on a Macintosh, it bears the word command.)
 Ctrl  (press and hold) the Ctrl (Control) key
 Fn  (press and hold) the Fn (Function) key (generally found only on laptops)
 Shift  (press and hold) the Shift key
 Enter  (press) the Enter (Return) key (on the main keypad)
 Esc  (press) the Esc (Escape) key
 F1  through  F12  function keys F1 through F12 (often in a row along the top of the keyboard)
 Space  (press) the space bar (usually unmarked)
 Tab  (press) the Tab key
 A  through  Z  the letters (on the main keypad)
 0key  through  9Key  the numerals (above the letters) on the main keypad
 Num0  through  Num9  the numerals on the numpad
 NumLock ,  Num/ ,  Num* ,  NUM− ,  Num+ ,  NumEnter , and  Num.  other keys on the numpad
 Delete  (press) the Delete key (not  NUM.  !)
 Down Arrow  (press) the down Arrow key (not  Num2  !)
 Left Arrow  (press) the left Arrow key (not  NUM4  !)
 Right Arrow  (press) the right Arrow key (not  NUM6  !)
 Up Arrow  (press) the up Arrow key (not  NUM8  !)

Combinations that involve holding down a key while performing another action are written with a plus sign (+). Thus:

  •  Shift + Tab  means to  Tab  while holding down  Shift 

and

  •  Shift + Ctrl + F9  means to  F9  while holding down both  Ctrl  and  Shift .

Mouse Notation[edit]

Blender uses three mouse buttons and the scroll wheel, if you have one. If your mouse only has one or two buttons, consult the tutorial on Non-standard Input Devices for alternative ways to access the functions assigned to these buttons.

Notation Action or Button
 LMB  click with the Left Mouse Button
 RMB  click with the Right Mouse Button
 MMB  press down on (don't turn) the scroll wheel or Middle Mouse Button
 SCROLL  turn the scroll wheel in either direction

Mouse and keyboard actions are often combined.  Shift + RMB  means to click  RMB  while holding down  Shift .

Navigating Menus[edit]

Blender uses both pop-up and pull-down/pull-up menus. Many menus have sub menus (menus that are reached via another menu). If a menu item displays a triangle, that means it leads to a sub menu. For instance, the pull-down menu shown below has seventeen items, four of which lead to sub menus:

The File menu

You can move through items in a menu by:

  • moving the mouse pointer up and down

or

  • pressing  Up Arrow  and  Down Arrow 

You can enter a sub menu by:

  • moving the mouse pointer to the right

or

  • pressing  Right Arrow 

You can leave a sub menu by:

  • moving the mouse pointer to the left

or

  • pressing  Left Arrow 

To initiate a menu action, you can:

  • click  LMB 

or

  • press  Enter 

You can escape from a menu by:

  • moving the mouse pointer away from the menu

or

  • pressing  Esc 

For each menu, Blender remembers your last choice and highlights it for you the next time you enter the menu.

Notation[edit]

Menu notation is fairly self-explanatory.

 Shift + A  Mesh → UV Sphere

Means:

  1. Press Shift+A
  2. In the menu that pops up, move through the items until Mesh is highlighted
  3. Enter the Mesh sub menu
  4. Move through the items until UV Sphere is highlighted
  5. Press Enter or click the left mouse button to initiate the action

Additional Resources[edit]

Non-standard equipment[edit]

This module is applicable only to users with non-standard input devices. If you have both:

  • a three-button mouse

and

  • a keyboard with a numpad,

you can skip this module.

Keyboards lacking a numpad[edit]

Most modern laptops have a pseudo-numpad, a set of keys in the main keypad which double as a numpad. The keys typically used for this purpose are:

 7key   8key   9key   0key 
 U   I   O   P 
 J   K   L   ; 
 M   ,Key   .Key   SLASH 

When used as a pseudo-numpad, these keys typically act as the following keys from a true numpad:

 Num7   Num8   Num9   Num/ 
 Num4   Num5   Num6   Num* 
 Num1   Num2   Num3   NUM− 
 Num0   NumENTER   Num.   Num+ 

The numpad functions of these keys can often be toggled with  F11  or  NUMLOCK  on PCs or with  F6  on Macs. Alternatively, you can often temporarily activate the numpad behavior by holding down  Fn .

If your keyboard has the alternate labellings but you don't know how they work, consult your laptop owner's manual.

As a last resort, you can use the "Emulate Numpad" feature of Blender. This will allow you to use the normal numeric keys as if they were numpad numerics. Instructions for enabling this feature may be found in the "User Preferences Windows" module.

Blender uses the numeric keypad quite a bit. If you envision using your laptop for this kind of work, it may be worth investing in a USB Numeric Keypad. On eBay, prices for simple external numpads start around $10 USD.

Non three-button mouse[edit]

For single-button mouse users, make sure that Input for Blender 2.79 (under "User Preferences" on the left-most drop-down menu) → Emulate 3 Button Mouse is enabled.

On many computers with two-button mice,  MMB  can be emulated by simultaneously clicking  LMB  and  RMB . On Windows machines you'll need to enable this in the mouse settings in the Control Panel. On a Mac, open the Keyboard and Mouse preference pane and enable Use two fingers to scroll. Alternatively, by selecting Emulate 3 Button Mouse under User Preferences,  MMB  can be emulated by simultaneously clicking  Alt  and  LMB .

Recent IBM Thinkpad laptops allow you to disable the 'UltraNav' features of the middle mouse button in order to use it as a 'normal' third button. Alternatively, some laptops allow areas (called gestures) on the movement pad to act as  MMB  or  RMB , and these can be set up in the Control Panel in the Mouse Pointer options, selecting gestures and editing features there.

Apple single-button mouse[edit]

Apple single-button mouse substitutions
Notation Single-button Substitute Description
 LMB   MB  the Mouse Button
 RMB   Cmd + MB  Apple key + the Mouse Button
 MMB   Alt + MB  Option (Alt) key + the Mouse Button

While Mac OS X natively uses both the  Ctrl + MB  and  Cmd + MB  to emulate  RMB , recent Blender releases for Mac OS X use only  Cmd + MB  for this purpose. This behavior is documented in the OSX Tips file that comes with the Mac version. You can also set the mouse to sense a right-click in System Preferences.

Note also that in the new, "unibody" design, the mouse button is under the trackpad, and the shortcut for  RMB  is clicking with two fingers simultaneously, which can be enabled in the System Preferences.

Laptops lacking a middle button but with a smart-pad[edit]

Many laptops have smart pads. Smart-pads can use gestures to give the effect of  MMB . The default for an Elan® Smart-Pad is two-finger tapping equivalent to clicking a  MMB . Dragging two fingers is the same as turning a mouse wheel.

Tablet PCs[edit]

To get the effect of  MMB  in a viewport, drag your pen around while holding down the  Alt  key.


Additional Resources[edit]

Operating System specific notes[edit]

This tutorial covers user-interface issues that are specific to particular operating systems or window managers. Read the section that applies to your computer; you may skip the rest.

GNU/Linux[edit]

 Alt + LMB  is used for changing the angular view on two angular axes of the 3D View window, if  Alt + LMB  moves the current window, then there's a conflict with your window manager. You can resolve the conflict or use  Ctrl + Alt + LMB  or  MMB  instead. (Also, you may have activated Compiz->Rotate Cube. Default configuration for rotating the Cube is also  Ctrl + Alt + LMB ; you may have to change this binding to an alternative configuration.) If you are running KDE this can be resolved by:  RMB  on the title bar of the main Blender window → select Configure Window Behavior → go to Actions → Window Actions → in the Inner Window, Titlebar and Frame section → select the Modifier key to be  Alt  and set all the select boxes beneath it to Nothing. An alternate method within KDE might be to  RMB  click on the title bar of the main Blender window; then select AdvancedSpecial Application Settings...Workarounds and then click Block global shortcuts with Force selected and checked.

In Gnome, Click System → Preferences → Window Preferences. Look for the last three options Control, Alt and Super. Select Super. Now you can press and hold  Cmd  to drag windows around, and use  Ctrl  and  Alt  as normal.

KDE[edit]

Under KDE,  Ctrl + F1  through  Ctrl + F4  are by default configured to switch to the corresponding one of the first four desktops, while  CTRL + F12  brings up Plasma settings. You can change these in System Settings.

Gnome[edit]

You'll want to disable the Find Pointer functionality in Gnome, which will impair your ability to use certain functions such as Snap to grid and the lasso tool. If your mouse pointer is being highlighted when you press and release  Ctrl , go to: Mouse in Gnome's Desktop Settings and uncheck the box Find Pointer.

Ubuntu[edit]

As of Ubuntu versions prior to about 09.10 (“Karmic Koala”), there was a known incompatibility between Blender and the Compiz Fusion accelerated (OpenGL) window manager used in Ubuntu. By default, Compiz Fusion is enabled in Ubuntu, causing the problems to manifest themselves in Blender as flickering windows, completely disappearing windows, inconsistent window refreshes, and/or an inability to start Blender in windowed mode.

The fix for this is simple. Install compiz-switch (might be in universe). Go to Applications → Accessories → Compiz-Switch. This will disable compiz temporarily. Do the same to turn compiz back on when you're done using Blender.

This is no longer needed for current releases of Ubuntu.

Mac OS X[edit]

On Macs with the new thin Apple Keyboard, you may need to press  Fn  in order to use the  F1  through  F12  keys.

To expand a section in Blender, you would usually press  Ctrl + UpArrow . On a Mac, if “Spaces” is enabled, you may have to use  Ctrl + Alt + UpArrow .

Microsoft Windows[edit]

Two Ways to Launch Blender[edit]

Blender requires a console for displaying error messages, so if you launch Blender by means of an icon, two windows will appear: the graphical user interface plus a console window. Closing either window will terminate Blender. These windows are indistinguishable in the Windows taskbar in versions of Windows before Windows 7, which leads to confusion. Also, launching this way does not provide any way to pass command-line arguments to Blender.

Launching Blender from a command prompt is extra work, but it overcomes these issues:

  1. Start → Run...
  2. enter cmd
  3. enter cd c:\Program Files\Blender Foundation\Blender
  4. enter blender

Blender version 2.6 onwards doesn't have this problem, and hides the console window by default. You can show it by clicking Window > Toggle system console

Sticky Keys[edit]

Pressing  Shift  five times in a row may activate StickyKeys, an accessibility option which alters how the computer recognizes commands. If a StickyKeys dialog box appears, you should  LMB  the "Cancel" button.

If you don't need the accessibility features, you can disable sticky keys:

  1. Start → Control Panel
  2. double-click on Accessibility Options
  3.  LMB  the Keyboard tab
  4. for each of the options StickyKeys, FilterKeys, and ToggleKeys:
    1. clear the Use … checkbox
    2.  LMB  the Settings button
    3. uncheck the Use Shortcut checkbox in the settings
    4.  LMB  the OK button for the settings
  5.  LMB  the OK button for Accessibility Options

Multiple Keyboard Layouts[edit]

On systems with multiple keyboard layouts, pressing  Shift + Alt  can alter the layout. (For instance, it might change from QWERTY to AZERTY or vice versa.) Because of this issue, Noob to Pro avoids  Shift + Alt  hotkeys.

If you find your keyboard layout altered, press  Shift + Alt  again to change it back.

You can also disable the hotkey:

  1. Start → Control Panel
  2. double-click on Regional and Language Options
  3.  LMB  the Languages tab
  4.  LMB  the Details button
  5.  LMB  the Key Settings button
  6.  LMB  the Change Key Sequence button
  7. uncheck the Switch Keyboard Layout checkbox
  8.  LMB  the OK button

Additional Resources[edit]

Blender Interface[edit]


Here's a preview screenshot of Blender's interface.

For those familiar with older (pre-2.5x) versions of Blender, this will look very different. The redesign makes it much easier to find things.

For a detailed rationale explaining the redesign, read this.

Blender 2.76b Startup.png

Why Doesn’t It Follow UI Conventions For [Insert OS Of Choice Here]?[edit]

Blender follows its own user interface conventions. Instead of making use of multiple windows as defined by your particular OS/GUI, it creates its own “windows” within a single OS/GUI window, which is best sized to fill your screen. Many people accustomed to how applications normally work on their platform of choice, get annoyed by Blender’s insistence on being different. However, there is a good reason for it.

The essence of the Blender UI can be summed up in one word: workflow. Blender was originally created by a 3D graphics shop for their own in-house use. Being a key revenue engine for them, they designed it for maximum productivity, speed and smoothness of operation. That means avoiding “bumps” that slow down the user. For example, windows never overlap, so there’s no need to keep reordering them. You don’t have to click in a window to make it active, just move the mouse. There is a minimum of interruption from popups asking for more information before performing some action. Instead, the action is immediately performed with default settings, which you can adjust afterwards and get immediate feedback on the results.

Blender may not be “intuitive” to start learning, in that you cannot simply sit down in front of it and figure out things on your own, especially from a position of knowing nothing at all. But once you have picked up some basic conventions, you will find it starts to make sense and then you will be free to experiment and discover things on your own.

Why Doesn’t It Prompt To Save Changes?[edit]

Most modern applications will ask for confirmation if you try to close a document that has unsaved changes. Blender is frequently criticized for not doing so.

But think about it. What constitutes an “unsaved change”? Are switching tools or adjusting the window layout changes worth saving? In Blender’s case, the answer is “yes”, because all that is part of the document state to be restored upon opening. So Blender would have to prompt for confirmation practically every time you closed a document or quit Blender.

Instead, Blender always saves changes when it closes, to a file called 'quit.blend'. The next time you use Blender, simply select File --> Recover Last Session and you can resume right where you left off.

Update: As of blender version 2.79, you are warned on exit when there are unsaved changes. You can change this behaviour in user preferences / Interface / Warnings / Prompt Quit.

Blender Windowing System[edit]

The Blender user interface may appear daunting at first, but don't despair. This book explores the interface one step at a time.

In this module, you'll learn about Blender windows:

  • recognizing windows and their headers,
  • the different types of windows,
  • how to activate and resize windows,
  • how to split and join windows.

You'll also practice launching and leaving Blender.

An Interface Divided[edit]

Blender's user interface is divided into rectangular areas called windows (or sometimes, areas). The overall arrangement of windows is called a workspace.

If you haven't already launched Blender, go ahead and do so. You should soon see something that resembles the following.

Blender has had some major changes to its user interface (UI) since version 2.4x. Some of these changes include moving buttons and changing the space bar hot key from the “add menu” to the “search menu” ( SHIFT + A  is now the "add menu” hot key). This is important to know when trying to follow tutorials.

Other changes include the addition of the tool bar and window splitting widget. The shelf widget (indicated by a plus sign) opens hidden tool shelves. The object tool shelf can be toggled on and off by pressing  T . The properties tool shelf can be toggled on and off by pressing the  N . The split window widget allows you to split and join windows. Blender 2.69 is shown below.

Blender269DefaultView.png

If you see something substantially different...
  • You may be running a different version of Blender - perhaps a newer version. The screenshot was made using the 2.69 release.
If you're running an older version, you should probably upgrade. Download instructions are in the Introduction.
  • The user-interface settings on your computer may have been changed.
    Try resetting the user interface with File → Load Factory Settings.
To take a video in Blender, press  Alt + F3 , and click Make Screencast. This will record what's on your screen until you click the red Close button on the info header. The screencasts will be saved in the tmp folder. In Microsoft Windows, the tmp folder is located at 'C:\tmp'.

Window Headers[edit]

Did you find all five headers?

Every Blender window has a header. A header can appear at the top of the window, at the bottom of the window, or it can be hidden. Let's take a closer look at the headers.

Blender-2.57 headers.jpg
The header of the Info window is outlined in green.

The header of the 3D View window is outlined in red. Note that it runs along the bottom of the 3D View window, not the top.

The header of the Properties window is outlined in blue.

The header of the Outliner window is outlined in white.

The header of the Timeline window is the one on the bottom (not outlined)

If you click with  RMB  on the header, a menu pops up which lets you move the header (to the top if it’s at the bottom, or vice versa), or maximize the window to fill the entire workspace:

Blender269HeaderMenu.png

To hide the header completely, move the mouse to the edge of the header furthest from the edge of the window (i.e. the top edge of the header if it is at the bottom of the window, or vice versa); it will change into a vertical double-headed arrow. Now click with  LMB  and drag towards the window edge, and the header will disappear. In its place, you will see the following symbol appear at the corner of the window: Blender274RevealShelfIconBrightened.png. Click this with  LMB  to bring the header back.

Window Types[edit]

Blender has many types of windows (there are 16 of them in Blender 2.69) and a Console for the Python programming language. You've just encountered the Info, 3D View, Properties, and Outliner windows. The rest will be introduced as needed in later modules.

Every window header in Blender has an icon at the left end to indicate the window type. For instance:

  • Blender 2.59 Info ico.png = Info
  • Blender 2.59 User Prefs ico.png = User Preferences
  • Blender 2.59 3d view icon.png = 3D View
  • Blender 2.59 Outliner ico.png = Outliner
  • Blender 2.59 Properties ico.png = Properties

If you  LMB  on the icon, a menu will pop up. (If you don't know what  LMB  means, please review the Keystrokes, Buttons, and Menus Notation module.)

Blender269 3DViewWindowType.png
By matching the icon in the header to the icons in the menu, you can tell that the window here is a 3D View window.

The menu can be used to alter a window's type. In this screenshot, the user is about to change the window into a Properties window.
Note:

Any window can be changed to any type. Blender doesn't mind if there are multiple windows of the same type.

 

Note:

The workspace layout is saved along with the document. Anybody subsequently opening the document will see the last-saved layout.

 

If you've changed any window's type, please change it back (or reload the factory settings with File → Load Factory Settings) before continuing with this tutorial.

The Active Window[edit]

The active window is the one that will respond if you press a key. Only one Blender window is active at any given time.

The active window is usually the one containing the mouse pointer. (Blender uses a "focus follows mouse" user interface model. When a hotkey fails to work as expected, it is often because the mouse pointer has strayed into a neighboring window.) To change the active window, simply move the mouse pointer into the window you wish to activate.

Practice changing the active window by moving your mouse between the 3D View and the Timeline windows. The Timeline window is directly below the 3D View header. At this point, it's worth mentioning that the header for the 3D View window and Timeline window is at the BOTTOM of its own window instead of the top as the name "header" implies.

Note:

When a window becomes active, its header gets brighter.

 

Resizing Windows[edit]

Resizing windows is easy.

Dragging on a Border[edit]

Blender 2.63 init factory bottom.png
Step 1
Move the mouse pointer to the border between two windows (the area outlined in red below. The pointer will change to an up/down arrow.
Steps 2-4
Press and hold  LMB .
Drag with the mouse to move the border up and down.
When the border is where you want it, release  LMB .

Whenever you increase the size of one window, you decrease the size of another. That's because Blender has a non-overlapping window interface: unlike many other programs, it does not permit windows to overlap. Neither does it move windows. It just resizes them. If you find that you cannot increase the size of a window (e.g. the Info window) any further although there seems to be enough space to do so, it may be because you decreased the size of another window (e.g., the Outline window) to its minimum size (just the heading).

Maximizing a Window[edit]

Another way to resize a window is to maximize it. When Blender maximizes a window, it makes the window as large as possible. The previous window configuration is saved.

  • To maximize the active window, press  Ctrl + UpArrow  ,  Ctrl + DownArrow  or  Shift + Space . On a Mac, if “Spaces” is enabled, you may have to use  Ctrl + Alt + UpArrow .
  • When a window is maximized, use  Ctrl + UpArrow  ,  Ctrl + DownArrow  or  Shift + Space  to restore the previous (unmaximized) window configuration.


Practice maximizing and un-maximizing the 3D View and Timeline windows.

Note:

If you are running a version of Blender before 2.57, you cannot maximize a User Preferences window.

 

Shelves[edit]

You will notice that the 3D View Blender2693DViewIcon.png window (the largest window in the screenshots above) has several buttons down the left side. This rectangular portion is called the Tool Shelf. This is like a window within a window - you can drag the boundary between it and the main part of the 3D View to resize.

If you drag all the way to the window boundary, the shelf will disappear. In its place, the following symbol will appear: Blender274RevealShelfIconBrightened.png. Click it to bring the shelf back.

Too Much To Fit[edit]

If a window or shelf contains too much information to fit within its display area, scrollbars will appear along the bottom or right edge. You can scroll the contents by dragging these with  LMB ; alternatively you can drag with  MMB  directly within the contents.

A window header may also contain more than fits within its displayable area. There is no explicit visual clue for this (though some of the widgets at the right edge might not be visible), but if that happens, you can drag sideways within the header with  MMB  to scroll its contents.

Splitting And Joining Windows[edit]

At the top right and bottom left of every window, you will see something like this: Blender254WindowWidget.png. If you move the mouse over the icon, you will see the pointer turn into a cross. At that point, you can do one of the following by clicking and dragging with  LMB :

  • Split the window into two copies horizontally by dragging horizontally away from the edge.
  • Split the window into two copies vertically by dragging vertically away from the edge.
  • Join the window to the adjacent one horizontally (getting rid of it and taking over its space) by dragging towards it.
  • Join the window to the adjacent one vertically (getting rid of it and taking over its space) by dragging towards it.

Of course, the last two are only possible if there is in fact another window in that direction. Note: you can only join windows horizontally that are the same height, and windows vertically that are the same width.

The Default Workspace[edit]

If you look at the above screenshot of the default workspace, you will see the following window types:

  • The menu bar at the top (outlined in green) is actually a window, called Info Blender269InfoIcon.png. In previous versions of Blender, you could resize this to reveal the User Preferences, but in 2.5x they have been moved to their own window type. Instead, all you can see here if you enlarge the window are some debug messages, which may be removed in a future version of Blender. As of 2.70, the debug messages are still present in this menu.
  • The largest window on the screen is the 3D View Blender2693DViewIcon.png. This is where you work on your model.
  • The Properties Blender269PropertiesIcon.png window is the tall area on the right; this is where most of the functions are located for performing operations on models, materials etc. In previous versions of Blender this was called the Buttons window. Over time, it evolved into a disorganized area that made it difficult to find things. It has been cleaned up significantly in 2.5x. Note that it defaults to a vertical layout, rather than the horizontal one of previous versions. The new design prefers a vertical layout, which better suits today’s widescreen monitors.
  • The Outliner Blender269OutlinerIcon.png (at the top right) gives you an overview of the objects in your document. As your models get more complex, you will start to appreciate the ability to quickly find things here.
  • The Timeline Blender270TimelineIcon.png (across the bottom) becomes important when you’re doing animation.

The default layout may not be optimal. For example, if you’re doing a static model or scene, not an animation, you can get rid of the Timeline. If you’re doing heavy script development, you’ll probably want the Console available to try things out. And so on.

Workspace Presets[edit]

In the Info window/titlebar, you will see a menu with an icon like this Blender267ScreenLayoutIcon.png. Clicking on it with  LMB  will show the following menu:

Blender255WorkspaceMenu.png

Selecting from this menu lets you quickly switch between various predefined workspace layouts, tailored to various workflows. Try it and see. You can return to the default layout by selecting “Default” (but note that any changes you make to the layout are immediately associated with the name being displayed here). The menu has a search box at the bottom. Typing text here will restrict the menu to showing items containing only that text. It might not appear to have much use, but in a complicated project that needs dozens of different layouts, the search function could become very useful indeed!

The name of the currently selected item appears to the right of the menu icon. In the illustration above, this is "Default". Blender allows you to rename the current menu item by clicking on it with the  LMB  and typing a new name, so take care not to do so unless you actually want to rename the menu item. For example, if you replace the name "Default" with "MyDefaults", you will subsequently see that "MyDefaults" appears in the list of menu items.

Note also the “+” and “X” icons to the right of the menu; clicking “+” creates a new entry which is a duplicate of the last-selected entry, while clicking “X” gets rid of the currently-selected entry. You will see these conventions appear consistently in menus elsewhere in Blender’s new, revamped interface.

One Document At A Time[edit]

Blender can only work with one open document at a time. To save changes to the current document, select one of the Save options from the File menu (or press  Ctrl + S  to save under the last-saved name). To open a new document (actually load a copy of your last-saved user preferences), select “New” from the File menu (or press  Ctrl + N ), and select “Reload Start-Up File” from the popup that appears, but be aware this will not automatically save any changes to the previous document.

Scenes[edit]

A scene is like a separate Blender-document within-a-document. Different scenes within the same document can easily share objects, materials etc. You can define them once and make different renderings and animations from them. You create, delete and switch scenes using the scene Blender267SceneIcon.png menu in the info header. A new document starts by default with just one scene, called “Scene”.

Leaving Blender[edit]

To exit Blender:

  1. If there's a tool active, press  Esc  to exit the tool.
  2. Press  Ctrl + Q . This brings up an OK? menu.
  3. Confirm Quit Blender by clicking  LMB  or pressing  Enter .
Note:

Blender will not prompt you to save your work. However, you can easily pick up where you left off by using File → Recover Last Session.

 

Additional Resources[edit]

User Preferences Windows[edit]

In this module, we'll take a closer look at the User Preferences window. In the process, you'll encounter three different user-interface controls: radio buttons, toggle buttons, and sliders.

Saving User Preferences[edit]

Most applications have a place to keep user-configured settings (including document defaults), separate from any user-created documents. Blender works in a slightly different fashion. All user-configured settings are saved in every document you create. Each time you create a new Blender document, it reloads your default document, which is called .B.blend. To save your current state as the default document, press  CTRL + U . This will save everything you’ve done to the current in-memory document, including objects and materials created, to .B.blend.

Accessing the User Preferences[edit]

First we must open the User Preferences window. There are 3 ways to do this:

  • Click  LMB  File → User Preferences...
  • Change the window type of the top header to User Preferences Blender269UserPrefsIcon.png and drag the header down.
  • Press  CTRL + ALT + U , which will open the User Preferences into a separate window which you can resize at will.


The User Preferences window should look something like the screenshot below.

Blender-2.5 user preferences.png

Configuring Your Preferences[edit]

In order to get to modeling and rendering sooner, this tutorial will cover only a few of the many user-settable preferences.

Auto Save[edit]

As the name suggests, Auto Save automatically saves the current .blend after a specified period of time. The settings are:

  • Auto Save Temporary Files: This enables/disables the auto save feature.
  • Timer (mins) slider: This specifies the time in minutes between each auto save.
Note:

In Blender 2.66 and later, an additional option is available: "Keep Session". This option always saves a quit.blend at Quit, and loads it on starting Blender. If you close Blender with an "empty file" session (the startup.blend), it keeps the Window header name "Blender" and treats the session as if no file was loaded. For the purposes of this tutorial, it can be left disabled.

 

Blender-2.5 user preferences files.png

Number of Undo Levels[edit]

Next we'll look at the undo settings. By default, Blender remembers your last 32 actions and allows you to undo them one at a time by pressing  Ctrl + Z . If your computer has plenty of memory, you may wish to increase that number. If it has relatively little memory, you might consider decreasing it to 10 or 20. The Memory Limit slider specifies the amount of RAM (in megabytes) to use for storing the undo levels. Undo level "0" is unlimited.

Blender-2.5 user preferences editing.png

Numpad Emulation[edit]

Blender uses numberpad keys (such as  7 ) to control the 3D View and ordinary numeral keys (such as  7 ) to change layers. If you are working on a laptop or if you find the numberpad inconvenient, you can select Emulate Numpad to reassign the 3D View controls to the ordinary numeral keys.

Blender-2.5 user preferences input.png


If you ever need to restore Blender to its factory settings, you can delete your personal ".blend" file then restart Blender, or click  LMB  File → Load Factory Settings

Note:

The second method only affects the current session. To make the settings persist, you would need to save them with  Ctrl + U  or File → Save User Settings - This menu name has been changed to Save Startup File in Blender 2.67b.

 

Additional Resources[edit]

Buttons Windows[edit]

The Properties Blender269PropertiesIcon.png window is where you will find most of the functions that Blender can perform with objects and materials, animation, rendering, etc. It is the area where you will see the greatest number of changes from earlier versions of Blender (in which, it was called the Buttons window). Hopefully you’ll agree the new layout makes it much easier and quicker to find things!

In the header of the Properties window, you will see a row of buttons that looks like this: Blender267PropertiesTabs.png The actual icons will vary depending on the type of object selected in the 3D view. In the default layout, the Properties window may be too narrow to show the entire row, in which case you can widen the window, click drag across the buttons with  MMB  to scroll the button row, or use your mouse wheel within them. Each of these buttons gives you access to a different context, or subsection of the Properties settings. Unlike older verions of Blender, there are no more “subcontexts” — no additional buttons will appear in the header when you click any of these.

The Contexts[edit]

Render Context Blender255RenderContextButton.png[edit]

Here we find the settings that control overall rendering of the final images, i.e. what resolution to use, output format, performance, post processing, etc.

Render Layers Context Blender267RenderLayersContextButton.png[edit]

Additional settings that offer finer control over rendering of the final images: which scene layers to render, which separate parts (passes) of the rendering process to actually perform, and how to group them into render layers (not to be confused with the scene layers) for input into subsequent compositing.

Note:

In versions of Blender prior to 2.67, these settings were combined into the Render Context.

 

Scene Context Blender255SceneContextButton.png[edit]

Contains settings for colour management, choosing which camera to use for rendering, and units and gravity settings for physical modeling.

You can also select another scene to be a “background” for this scene. That is, all renders of this (foreground) scene will also include the contents of the background scene, as though they had been copied into this scene. While the background appears in the 3D viewport when editing this scene, none of its contents are editable, or even selectable; that has to be done in the background scene itself.

World Context Blender255WorldContextButton.png[edit]

Settings that govern the environment in which the model is rendered. e.g. background sky color, mist and star settings, lighting etc.

Object Context Blender255ObjectContextButton.png[edit]

Settings that apply to all types of objects. e.g. overall transformations, layer assignments, grouping etc. The settings shown here (and any changes made) apply to the last object selected. This is also the case for the following object-specific contexts.

Object Constraints Context Blender255ObjectConstraintsContextButton.png[edit]

These settings limit the motion of the object for animation purposes. The limits can also be tied to the motion of other objects in various ways.

Object Modifiers Context Blender255ObjectModifiersContextButton.png[edit]

Settings for applying modifiers to the object geometry. These make changes to the geometry that only take effect at rendering time. Note: lamps, cameras and empty objects cannot have modifiers.

Object Data Context Blender267ObjectDataContextButtons.png[edit]

Settings specific to the type of object, e.g. mesh vertex groupings, text font, lamp settings, camera settings, etc. This is reflected in the icon, which changes according to the type of object selected.

Material Context Blender255MaterialContextButton.png[edit]

The material settings for an object control its appearance, e.g. its colour, whether it has a shiny or dull surface, how transparent it is, and so on.

Note:

The chosen rendering engine — Blender Internal (the default), Blender Game, or Cycles — will impact the choices available for material and texture settings.

 

Texture Context Blender255TextureContextButton.png[edit]

The texture settings specify patterns that break up the uniform appearance of a material. These patterns can affect the colour of the material, give it a rough surface, or modify it in other ways.

Particles Context Blender255ParticlesContextButton.png[edit]

An object can be set to emit particles, like smoke, flames or sparks. The concept of “particles” (and the underlying algorithms) also includes the generation of hair or fur. Particles can be entirely custom objects, to produce effects like blades of grass interspersed with flowers in a field, water droplets on a wet surface, or even scatterings of entire buildings to make up a large cityscape!

Physics Context Blender255PhysicsContextButton.png[edit]

Settings that control how the object reacts to forces similar to objects in the real world, e.g. whether it behaves like a rigid body that keeps its shape but can be knocked around, something soft e.g a pillow, or a flowing liquid.

Where Did The Old Stuff Go?[edit]

For those used to older (pre-2.5x) versions of Blender...

The old Logic Context has been moved into its own window type, the Logic Editor.

The old Script Context is gone. Python scripting is now much more closely integrated into the Blender UI, and old scripts will not work anyway.

The functions of the other contexts have been rearranged into the new contexts as listed above. Once you get used to the new arrangement, it should make much more sense than the old one.

3D View Windows[edit]

3D View Blender2693DViewIcon.png windows are used to visualize 3D scenes. You’ll do a lot of work in these windows, so you will need to learn your way around.

Note:

The 3D view only shows an approximation of the final appearance of the scene. The overall geometry should be correct, but don’t expect accurate rendition of materials, textures, lighting etc, since that can be very time consuming. The 3D view is designed to respond to your actions at interactive speeds. There are additional view options (wireframe, hiding etc) that make it easier to see which parts of the model you’re working on, have no effect on the final render. You can change your viewpoint at any time (which will be essential while working on your model/scene), while the viewpoint of the render is controlled by the camera position.

 

In this module, you'll learn:

  • to recognize 10 things commonly seen in viewports
  • to tell which mode Blender is in
  • how to change viewport options and viewpoints
  • how to position the 3D cursor

You'll also learn the fundamentals of:

  • visibility layers

The Viewport and its Contents[edit]

Aside from its header, the remainder of a 3D View window is its viewport. You use viewports any time you need an up-to-date view of the scene you're working on.

Viewports are busy places. Go on a scavenger hunt and see what you can find in a simple viewport.

  1. Launch Blender.
  2. Just so we're all looking at the same scene, load the factory settings using File → Load Factory Settings.
  3. Confirm the “Load Factory Settings” popup with  LMB  (or  Enter ).
  4. If the NumLock indicator on your keyboard is unlit, press  NumLock  so that numpad hotkeys will work properly.

(If you're unsure what  LMB  means, please review the Keystroke, Button, and Menu Notation module.)

You should see something like this:

Blender-2.57 viewport outline.png
Here the viewport has been outlined in red to focus your attention on it.

A Virtual Scavenger Hunt[edit]

Look at the default scene and find the following eight items:

In the Center

1. Blender-2.5 cube object mode.PNG a solid gray cube with orange edges.

  • This is the default cube, your first Blender object!

2. Blender 3D Manipulator screenshot.png Three arrows, one red, one green and one blue, their tails joined to a white circle

  • This is not an object (part of your model/scene), but part of Blender’s user interface for manipulating objects. It is the manipulator, also known as the 3D transform widget.
  • The arrows represent the directions of the X, Y and Z axes of the currently chosen transform orientation coordinate system. Initially this is the global coordinate system.
  • The circle represents the center of the selected object (the cube).
  • If you don't know what the "global coordinate system" is, please review the module on Coordinate Spaces in Blender.
If you don't see the manipulator...
  • It's possible that a tool is active. Press  Esc  to cancel any tool action.
  • Another possibility is that the manipulator has been disabled:
    • Toggle it on or off with  Ctrl + Space .

3. Blender 2.49b cursor.png A red-and-white striped circle with black cross-hairs

  • This is not an object. It is the 3D Cursor, which indicates where newly-created objects will appear in the scene.
  • The cursor is similar to the insertion point in a text editor, which indicates where new text will be inserted in a document.
In the Lower Left Corner

4. Blender 3D mini axis screenshot.png

  • This is not an object. It is the mini axis, and its orientation matches that of the global coordinate system, with the usual conventions: red for X, green for Y and blue for Z. Think of it as a little compass, reminding you which way is left/right, front/back and up/down.

5. The notation "(1) Cube"

This is not an object. It is object info, indicating that:
  • You're viewing the first frame of an animation.
and
  • The current or most recently selected object is named "Cube".
In the Upper Left Corner

6. The notation “User Persp”

This is not an object. This tells you which mode the viewport is in. The first word will change if you select one of the perfect views or the camera view (see below), otherwise it just says “User”, and the second word is “Persp” or “Ortho” to indicate whether this is a perspective or orthographic view.
To the Right of Center

7. Blender 2.49b lamp icon.png A black round thing that resembles a sun symbol

This represents a lamp, a light source for the scene. (It is an object.)

8. Blender 2.49b camera icon.png A pyramidal wireframe item

This represents a camera, a viewpoint that can be used for rendering. (It too, is an object.) The direction it is looking is out the base of the pyramid. The solid triangle attached to one side of the base is to remind you which way is up in the image that the camera takes.
On a small display, the camera might initially lie outside of the viewport and thus be invisible. In that case, zoom out by scrolling with  MMB  until it becomes visible.
Throughout

9. A dark gray background, divided into squares by lighter lines. This is the grid floor, which you can (but don’t have to) use as a ground plane for positioning your models.

Each grid square is one blender unit (or BU) on a side. A BU can be whatever you wish, e.g. an inch, a centimeter, a mile, or a cubit. Blender lets you choose your scene scale in the Scene tab of the Properties Panel.

10. Three mutually perpendicular coloured lines associated with the grid floor: the red and green ones lying horizontally in the floor and the blue one running vertically. These are the global coordinate axes for orienting your scene. Red is the X-axis, green the Y-axis, and blue the Z-axis.

  • In Blender 2.67a, you can't see the blue line for Z-axis here, but you can see it in Front or Side view.

Modes[edit]

Blender has many modes, i.e. settings that affect its behavior, and this is especially true of the 3D View window.

Sometimes it's not obvious which mode is active. This leads to mode errors where Blender will do something you didn't expect because you thought it was in one mode and it was actually in another.

The function performed by a hotkey or mouse button can depend on:

  • what mode the user interface is in,
  • whether the keyboard is in NumLock mode,
  • which window is active,
  • the mode the active window is in,
  • which item or items are selected,
  • whether you've initiated a hotkey sequence.

It helps to recognize the common modes and how to get out of them.

Object Mode vs. Edit Mode[edit]

The 3D View windows are normally in Object Mode. In this mode:

    • The mouse pointer is the default arrow normally used on other programs.
    •  RMB  is used to select objects in the scene

If there are objects in the scene, you can get into five other modes:

  • Edit Mode: used to edit the shapes of objects
    • The mouse pointer is a thin inverse-video cross.
    •  RMB  is used to select vertices, faces or edges of the current object.
    • Press  Tab  to enter/exit this mode.
  • Sculpt Mode/Vertex Paint/Texture Paint/Weight Paint
    • The mouse pointer is now a thin, orange (white in Texture Paint) circle.

These modes are also indicated by a menu in the 3D View header. You can use this menu to change modes.

Blender-2.5 mode menu.png

These modes are a setting shared by all 3D View windows. In other words, when you change the mode in one window, any other 3D View windows change mode also.

Viewport Options[edit]

Note:

The options in this section only affect 3D View viewports. They do not affect renders.

 

Solid vs. Wireframe[edit]

By default, the 3D View window draws objects using the Solid drawtype, in which surfaces are opaque. To toggle between Solid and Wireframe drawtype (edges only, no faces) for a particular viewport:

  1. Activate the 3D View window.
  2. Press  Z .

Alternatively, you can choose these and other drawtypes from the "Viewport shading" menu in the 3D View window header.

Orthographic vs. Perspective[edit]

By default, viewports draw orthographic views. To toggle a viewport between orthographic and perspective views:

  1. Activate the 3D View window.
  2. Press  Num5 .

(If you're unsure what the difference is, please review the "Orthographic Views" module and the "Perspective Views" module.)

Note this perspective versus orthographic setting for the 3D viewport is completely separate from the similar setting in the camera properties. The former takes effect while you’re working on the model, the latter when you render.

So why have a separate setting for the 3D view? Because certain aspects of modelling are easier in one view than another. If the final render will be using perspective, then showing perspective in the 3D view naturally gives you a better idea of how the final render will look. But perspective foreshortening can sometimes make it hard to ensure the model has the proper shape, which is why there is the option to switch to orthographic view.

If you have trouble distinguishing between orthographic view and perspective view

... you should activate the View Name option. This is enabled by default and causes the name of the current view ("User Persp", for instance) to appear in the upper left corner of every viewport. If there is no text, then you can enable it by:

  1. Accessing the User Preferences window.
  2. Click on the Interface tab.
  3. Enable View Name.

Changing Your Viewpoint, Part One[edit]

Each viewport has a viewpoint, which takes into account:

  • the location of the viewer in the 3D scene (There doesn't need to be an object at that location.)
  • the direction the viewer is looking
  • the magnification (or zoom factor) used

Changing your viewpoint allows you to navigate your way through a 3D scene.

We'll start with three very basic techniques:

  • Zooming
  • Orbiting/View Rotation
  • Perfect Views.

Additional techniques will be covered later in this module.

Zooming[edit]

Blender offers several ways to zoom in and out:

  • Use  SCROLL 
  • Click and drag vertically with  Ctrl + MMB .
  • Use  Num+  and  NUM−  to zoom in and out in small increments.

Note the following limitations of Blender's zoom feature:

  • If the viewport is in orthographic mode, Blender zooms as if looking through a telescope. You can increase the magnification, but the viewpoint's location doesn't change. For this reason, you cannot zoom into or through objects in orthographic mode.
  • If the viewport is in perspective mode, Blender zooms to the center of the viewport. The viewpoint can pass through objects, but can't pass beyond this point, no matter what you do. Zooming only gets slower and slower and slower. If the center of the viewport is somewhere you don't expect, zooming may appear to be broken.

Orbiting and View Rotation[edit]

Let's fly around the default cube, viewing it from different angles. In this way you'll see that it really is a cube, centered on the origin, half above the X-Y plane and half below it.

  1. Activate the 3D View window by placing the mouse pointer inside it.
  2. Now you can:
    • Click and drag with  MMB  to orbit freely around the center of the view.
    • Use  Shift + Alt + SCROLL  to rotate the viewpoint vertically around the center of the view.
    • Use  Num2  and  Num8  to rotate the viewpoint vertically around the center of the view in 15-degree increments.
    • Use  Ctrl + Alt + SCROLL  to rotate the viewpoint around the Z axis.
    • Use  Num4  and  Num6  to rotate the viewpoint around the Z axis in 15-degree increments.

If this is all very confusing for you, don't worry! You'll learn as you get more experience.

When you are finished flying around the cube, you can restore the original view by reloading the factory settings with File → Load Factory Settings.

If the hotkeys don't work...

You may have pressed number keys above the letters instead of the ones on the numpad. If you do, the default cube will vanish. This is because the scene consists of multiple layers. The default cube is in layer 1, and you've told Blender to switch to the layer of the number you just pressed. The selected object (the cube in this case) remains in layer 1, which is no longer visible. For instance,  2Key  tells Blender to switch to layer 2. To switch to layer 1 again, press  1Key . You can view the different layers by clicking on the little squares on the layer map: Blender-2.5 layers.png

Note:
The center of the viewport is not marked, i.e. it's difficult to tell where it is.  This can cause unexpected behavior during rotation.

 

Perfect Views[edit]

It's often useful to get a perfect view of a scene, i.e. to view it along one of the main axes, with the other two main axes oriented up-down and left-right.

Perfect View Hotkeys
Hotkey View Axis Pointing Right Axis Pointing Up
 Num7  "top" +X +Y
 Ctrl + Num7  "bottom" +X -Y
 Num1  "front" +X +Z
 Ctrl + Num1  "rear" -X +Z
 Num3  "right side" +Y +Z
 Ctrl + Num3  "left side" -Y +Z

The following screenshot shows all three perfect views plus camera perspective for the Suzanne primitive:

Blender-2.5 perfect view quad.png

This layout is used so often, it has a keyboard shortcut: ( CTRL + ALT + Q ).

Positioning the 3D Cursor[edit]

Positioning the 3D cursor is a very basic operation, yet one that many beginners find challenging. It touches on an issue common to all 3D graphics software: "How do you specify points in a 3D scene when we can only see two dimensions at a time?"

Basic Technique[edit]

  1. Go into either Object Mode or Edit Mode.
  2. Move the mouse pointer to the desired position (in any viewport).
  3. Click  LMB .

Two Challenges[edit]

Challenge #1. Using only tools presented thus far, try positioning the 3D cursor on the virtual camera.

Try it!

When you're done, check your work by orbiting the camera.

Perhaps you thought you were done when you clicked on the camera. But the moment you changed your viewpoint, you probably found that the 3D cursor was actually behind (or in front of) the camera.

Hints:

  • Try positioning the cursor in two different perfect views.
  • Use orthographic, not perspective, view.

Challenge #2. Using only tools presented thus far, try repositioning the 3D cursor at the origin (that is, at the center of the cube).

As before, check your work by orbiting the cube. Don't spend too much time on this.

User Comments

"I found that I would select the cube when left clicking on it in object mode, if the "Use 3d transform manipulator" button was enabled. To toggle this off, you click on the gray pointing hand in the 3d panel header, or (Ctrl Space)."

"When you want the cursor back into the cube, just select the camera with RMB, put the cursor into the cube following the steps above, and re-select the cube with RMB."

"I've discovered it helps a lot if you are in Object Mode and not in Edit Mode. I wrote the following before discovering this: The problem with this exercise, for me, is that left clicking on the cube selects the cube instead of moving the 3d cursor. If I click on the cube outside of its central white circle I can get the cursor to move there, but only to outside of this white circle, and even then this only works sometimes."

"I failed at this until I had zoomed in close enough to the cube. When I was too far zoomed out I kept selecting the cube rather than creating an edit point."

"I had the same problem and found it was because the cube was selected. I made sure I was in object mode, right clicked on the camera to select the camera instead of the cube, and I could then position the edit point in the cube. However, doing this messed up the next part of the tutorial because you cannot switch into edit mode with the camera selected! Perhaps the suggestion of trying to put the 3D cursor in the cube should be dropped as it raises too many questions at this stage."

"You can deselect all by pressing the AKEY or the select button in the 3D View."

"Use wireframe mode works better to get the cursor in."

"To get it back in the cube: 1) Make sure you're in object mode. 2) Select the cube. 3) Object > Snap > Cursor to selection (cursor refers to the 3D cursor here) so it puts it right in the middle of the cube."

"I think it's an essential point to note that in order to place the cursor inside the cube, the cube must NOT be selected. AKEY was probably the best way to deselect the object."

"If I remember correctly, undo history gets cleared when you switch between object and edit mode."

"I wasted a lot of time here. Thank you to the reader who suggested (on the 3D view header) Object > Snap > Cursor to selection. It was the only thing that worked to get the cursor visible again and placed where clicked."

"I missed the point of the exercise first time around. You can't set a 3D point on a 2D screen without technique. Orthographic views are crucial. I am just learning, but take that, at least, away from it."

"Positioning the 3D cursor in othographic views always made it snap to the cube surface, making it impossible to center precisely. Fix this by disabling "Cursor Depth" on the "interface" tab under "User Preferences".

"The phrase check your work by orbiting the camera needs additional clarification, such as a referenced section or the precise commands to use."

More Ways to Position the Cursor[edit]

Blender-2.5 snap menu.png

Here's an easy way to position the cursor at the center of an object:

  1. Make sure Blender is in Object Mode, with the object selected.
  2. Move the mouse pointer to any 3D View window.
  3. Snap the cursor to the selected object using either:
    •  Shift + S Cursor to Selected
    or
    • Object → Snap → Cursor to Selected

Here's 2 easy ways to relocate the cursor to the scene's origin (0, 0, 0):

  1. Move the mouse pointer to any 3D View window.
  2. Press  Shift + C  to reset the cursor to the origin.
    • Note that this also changes the view location, meaning that when you zoom in, you won't zoom in to the scene origin.
  3. A better way is to click Object → Snap → Cursor to Center
    • You can also do this by  Shift + S Cursor to Center.

Changing Your Viewpoint, Part Two[edit]

Now you'll learn some additional techniques for obtaining the view you want:

  • Panning
  • Centering
  • Jumping to the camera's viewpoint
  • Zooming in on a selected area

Panning[edit]

When you orbited the cube, the viewpoint's position and direction both changed at the same time. You also can shift the viewpoint up-down or left-right without changing its direction. (This is similar to the side-scrolling effect in the classic Mario and Sonic video games.)

This is called panning, and it's an important skill to master. Try it now:

  1. Activate a 3D View window by placing the mouse pointer inside it.
  2. Now you can:
    • Use  Shift + SCROLL  to pan up and down.
    • Use  Ctrl + Num2  and  Ctrl + Num8  to pan up and down in small increments.
    • Use  Ctrl + SCROLL  to pan left and right.
    • Use  Ctrl + Num4  and  Ctrl + Num6  to pan left and right in small increments.
    • Click and drag with  Shift + MMB  or  Shift + Alt + LMB  to pan freely in the viewplane.


You will likely find this to be a distraction in some cases. To move the viewpoint position back to the center, snap the cursor to the center, then click View → Align View → Center View to Cursor. You could also snap the cursor to the center then press  Ctrl + Num. .

In version 2.74 use  Alt + Home.  to center the view to the cursor.

Centering[edit]

When you zoom or rotate the view, you always zoom or rotate around the center of the view.

To make sure everything in your scene is visible:

  1. Press  Home .

To center the view on an arbitrary point:

  1. Move the 3D cursor to the point of interest.
  2. Verify the cursor position from a second viewpoint.
  3. Press  Alt + Home  to center the view.

To center the view on an object in the scene:

  1. Make sure Blender is in Object Mode.
  2. Zoom out until the object is in the viewport.
  3. If any objects are selected, use  A  (or Select → Select/Deselect All) to deselect them.
  4. Select the object of interest by clicking  RMB  on it.
  5. Press  Num.  to center the view.

Jumping to the Camera's Viewpoint[edit]

To see the scene as the virtual camera sees it, press  Num0 . Afterwards, you can rotate, pan, and zoom normally, but the virtual camera will not follow. To go back to your previous view, press  Num0  again. (In the latest versions of Blender, the virtual camera can be made to follow all the changes made in viewpoint while in camera view by checking the option "Lock Camera to View" on the Transform panel. Hit  N  on your keyboard to bring up the transform panel. To disable this option uncheck "Lock Camera to View.")

Zooming into a Selected Area[edit]

Suppose you want to get an extreme closeup of a particular area. Because there's no center mark on the viewport, you might have to pan and zoom several times to get the desired view.

The shortcut for zooming to an area is:

  1. Activate a 3D view window that contains the area of interest.
  2. Press  Shift + B . A crosshair appears in the viewport.
  3. Click and drag with  LMB  to draw a rectangle around the area of interest.
  4. When you release  LMB , the viewport will zoom in on the area you selected.

View Navigation[edit]

You can also change your viewpoint in the 3D view by “walking” or “flying” through it. To activate this, press  SHIFT + F . By default in Blender 2.70, this puts you in “walk” mode. Earlier versions only offered “fly” mode. (In Blender 2.70 and later, you can choose which one you prefer in User Preferences, under the Input tab.)

In both modes, helpful prompts appear in the header of the 3D view window to remind you of the key functions while the mode is in effect. When you have reached the position and orientation you want, press  LMB  or  ENTER  or  SPACE  to end the navigation mode and stay there, or  RMB  or  ESC  to abandon the navigation mode and be teleported immediately back to your original position and orientation.

Walk Mode[edit]

In this mode, you move the mouse to turn your view up/down/left/right, and  W ,  A ,  S  and  D  or the corresponding arrow keys to move forward, left, back or right, and  E  and  Q  to move up or down respectively. Hold a movement key down to keep moving. Movement stops as soon as you release it. Pressing  MMB  will “teleport” you close to whatever objects lie within the crosshairs at the centre of the view.

You can also use  TAB  to turn on gravity. Make sure there is a floor or other object under you to land on! With gravity on, you can no longer use the vertical movement keys, but you can use  V  to make jumps. Press  TAB  again to turn gravity off.

Fly Mode[edit]

In this older mode, moving the mouse to change the view works the same as in Walk mode, but the above direction keys ( W ,  A ,  S ,  D ,  E ,  Q  and the arrows) apply “thrust” in the respective directions, so you keep moving after releasing the key. Press the key repeatedly to increase your speed in that direction, or press the key for the opposite thrust direction to reduce your speed. You can roll the mouse wheel up to apply forward thrust, or roll it down to apply backward thrust.

Your current velocity vector automatically changes direction with you when you turn. Thus, you can apply a single burst of sideways thrust while facing an object, then, without applying any additional thrust, keep turning to face the object, and you will go right around it.

Visibility Layers[edit]

Every object in the scene is assigned to one or more of 20 visibility layers.

Visibility layers have many uses:

  • You can put scenery, characters, particles, and lamps in different layers, to help organize your scene.
  • By changing which layers are visible, you can simplify your view of the scene and work with only one or two layers at a time.
  • When rendering, only visible layers are included. You can use this to render your scene layer by layer, checking each layer separately.
  • You can configure lamps to illuminate only objects in the same layer.
Left: Viewing layer 1 only.
Right: Viewing all 20 layers.

In Object Mode, you can tell which layers are visible by looking at the twenty small boxes located in the 3D View header between the Transform Orientation menu and the "Lock" button. The top row of boxes represents layers 1 through 10, with 1 being the leftmost and 10 being the rightmost. Similarly, the bottom row of boxes represents layers 11 through 20.

Hotkeys[edit]

  • To view just one of layers 1 .. 9, press  1KEY  ..  9KEY .
  • To view just layer 10, press  0Key .
  • To view just one of layers 11 .. 19, press  ALT + 1KEY  ..  ALT + 9KEY 
  • To view just layer 20, press  ALT + 0KEY .
  • To toggle the visibility of one of layers 1 .. 9 without affecting the visibility of the other layers, press  SHIFT + 1KEY  ..  SHIFT + 9KEY .
  • To toggle the visibility of layer 10 without affecting the visibility of the other layers, press  SHIFT + 0KEY .
  • To toggle the visibility of one of layers 11 .. 19 without affecting the visibility of the other layers, press  ALT + SHIFT + 1KEY  ..  ALT + SHIFT + 9KEY .
  • To toggle the visibility of layer 20 without affecting the visibility of the other layers, press  ALT + SHIFT + 0KEY .
  • To make all layers visible at once, press  ~ . Press  ~  again to return to your previous layer visibility setting.
Note:

The hotkeys in this section will not work if you've enabled numpad emulation in the User Preferences window. See the "User Preferences Windows" module for more details.

 

Note to AZERTY users:

On the AZERTY keyboard layout, the standard number keys are the &é"'(-è_çà keys. Do not use  Shift  unless you want to toggle visibility as explained below.


Holding down  Shift  while selecting a layer (by keyboard or mouse) will, instead of making only that layer visible, toggle the visibility. In this way, you can select combinations or to hide particular layers.

The key to press to select all layers at once differs by keyboard layout. It is:

  •  ¬'  (the key under Esc) on UK keyboards,
  •  `~  US,
  •  ö  German, Swedish, Finnish and Hungarian,
  •  ¨  Swiss German,
  •  æ  Danish,
  •  ù  AZERTY,
  •  ø  Norwegian,
  •  Ñ  Spanish,
  •  ç  Portuguese,
  •  "  Brazilian Portuguese,
  •  ò  Italian, and
  •  ё  Russian.

After pressing the aforementioned key, holding down  Shift  while pressing it again will restore the visibility settings you had before you made all layers visible.

When only one layer is selected, new objects are automatically assigned to that layer. When two or more layers are visible, new objects are assigned to the most recently visible layer.

Count Your Polys[edit]

If you want to count the polygons in your scene, the data is available in the Info Header.

Blender-2.5 polycount.png

As you can see in the above image, this scene has 507 vertices and 500 faces (polygons).

Blender Interface New[edit]

This is the revised interface in Blender 2.5x. If Blender 2.49 looks like something out of Star Trek, then the new Blender must be Star Trek: The Next Generation!

The major interface revision was initially resisted by many experienced blender users; but it has turned out that noobs are able to find things easier. The updates have also brought it much closer to on par with mainstream 3D content creation suites.

For the rationale behind the redesign, read this.

Blender254Screenshot.png

Blender Windowing System New[edit]

Warning: Display title "Blender 3D: Noob to Pro/Blender 2.5x Windowing System" overrides earlier display title "Blender 3D: Noob to Pro/Blender 2.5x Interface".


The Blender Workspace[edit]

Blender prefers to run full-screen, because it manages its own windowing system. This divides the screen up into rectangular, non-overlapping windows (sometimes called areas). These are marked out with coloured borders in the following screenshot of the default Blender 2.55 workspace layout:

Blender255WindowsMarked.png

Each window has a header, which always shows an icon at its leftmost end which identifies the contents of the window. This icon has a pair of upward- and downward-pointing triangles next to it. If you click with  LMB  on this icon, a menu pops up which allows you to change what the window is showing:

Blender255EditorMenu.png

The header can be at the top or bottom of the window. If you click with  RMB  on the header, a menu pops up which lets you move the header (to the top if it’s at the bottom, or vice versa), or maximize the window to fill the entire workspace:

Blender255HeaderMenu.png

To hide the header completely, move the mouse to the edge of the header furthest from the edge of the window (i.e. the top edge of the header if it is at the bottom of the window, or vice versa); it will change into a vertical double-headed arrow. Now click with  LMB  and drag towards the window edge, and the header will disappear. In its place, you will see the following symbol appear at the corner of the window: Blender255RevealShelfIcon.png. Click this with  LMB  to bring the header back.

Note:

Any window can be changed to any type. You can have multiple windows of the same type.

 

Note:

The workspace layout is saved along with the document. Anybody subsequently opening the document will see the last-saved layout.

 

The Active Window[edit]

The active window is the one that will respond if you press a key. Exactly one Blender window is active at any given time; this is the one containing the mouse pointer. (When a hotkey fails to work as expected, it's often because the mouse pointer has strayed into a neighboring window.) To change the active window, simply move the mouse pointer into the window you wish to activate.

Note:

When a window becomes active, its header gets brighter.

 

Resizing A Window[edit]

When you move the mouse to the boundary between two windows, the pointer changes to a double-headed arrow. The arrows indicate the directions in which you can drag the boundary with  LMB , to resize the adjoining windows accordingly.

Shelves[edit]

You will notice that the 3D View window (the largest window in the above screenshot, outlined in yellow) has a bunch of buttons down the left. This rectangular portion is called the Tool Shelf. This is like a window within a window, and you can drag the boundary between it and the main part of the 3D View to resize.

If you drag all the way to the window boundary, the shelf will disappear. In its place, the following symbol will appear: Blender255RevealShelfIcon.png. Click that to bring the shelf back

Too Much To Fit[edit]

If a window or shelf contains too much information to fit within its display area, scrollbars will appear along the bottom or right edge. You can scroll the contents by dragging these with  LMB ; alternatively you can drag with  MMB  directly within the contents.

A window header may also contain more than fits within its displayable area. There is no explicit visual clue for this (except maybe the tell-tale of widgets being cut off at the right edge), but if it happens, you can drag sideways within the header with  MMB  to scroll its contents.

Note:

Wraparound Mouse: If, while scrolling by dragging with  MMB , the mouse reaches the edge of the display area, it will “magically” disappear and reappear on the opposite edge. This lets you keep on scrolling without having to let go and reposition.

 

Panels[edit]

Within certain windows, you will see occurrences of the following symbols Blender255PanelShowHide.png with headings next to them: click on the rightward-pointing one to make the panel appear, whereupon the symbol is replaced with the downward-pointing one; click that to make the panel disappear, and change the symbol back to the rightward-pointing one.

Splitting And Joining Windows[edit]

At the top right and bottom left of every window, you will see something like this: Blender254WindowWidget.png. If you move the mouse over this icon, you will see the pointer turn into a cross. At this point, you can do one of the following by clicking and dragging with  LMB :

  • Split the window into two copies horizontally by dragging horizontally away from the edge.
  • Split the window into two copies vertically by dragging vertically away from the edge.
  • Join the window to the adjacent one horizontally (getting rid of it and taking over its space) by dragging towards it.
  • Join the window to the adjacent one vertically (getting rid of it and taking over its space) by dragging towards it.

Of course, the last two are only possible if there is in fact another window in that direction. Note also that you can only join windows horizontally that are the same height, and windows vertically that are the same width.

The Default Workspace[edit]

If you look at the above screenshot of the default workspace, you will see the following window types:

  • The menu bar at the top (outlined in purple) is actually a window, called Info. In previous versions of Blender, you could resize this to reveal the User Preferences, but in 2.5x they have been moved to their own window type. Instead, all you can see here if you enlarge the window are some debug messages, which will probably be removed once this version of Blender goes to final release.
  • The largest window on the screen (outlined in yellow) is the 3D View. This is where you work on your model.
  • The Properties window is outlined in green; this is where most of the functions are located for performing operations on models, materials etc. In previous versions of Blender this was called the Buttons window, and was degenerating into a disorganized grab bag of functionality that made it difficult to find things. This has been cleaned up in a major way in 2.5x. Note also that it defaults to a vertical layout, rather than the horizontal one of previous versions. The new design prefers a vertical layout, which works better on today’s widescreen monitors.
  • The Outliner (in blue) gives you an overview of the objects in your document. As your models get more complex, you will start to appreciate the ability to find things quickly here.
  • The Timeline (in red) becomes important when you’re doing animations.

Of course, this is just the default layout. For example, if you’re doing a static model or scene, not an animation, you can get rid of the Timeline. If you’re doing heavy script development, you’ll probably want the Console available to hand to try things out. And so on.

Workspace Presets[edit]

Up in that Info window/titlebar, you will see a menu with an icon looking like four little squares. Clicking on it with  LMB  will show the following menu:

Blender255WorkspaceMenu.png

Selecting from this menu lets you quickly switch between various predefined workspace layouts, tailored to various workflows. Try it and see—you can return to the default layout by selecting “Default” (but note that any changes you make to the layout are immediately associated with the name being displayed here). The menu even has a search box at the bottom: typing some text in here will restrict the menu to only showing items containing that text. Hard to believe it has much use here, but perhaps in complicated projects which need dozens of different layouts, a search function could become very useful indeed!

Note also the “+” and “X” icons to the right of the menu; clicking “+” creates a new entry which is a duplicate of the last-selected entry, while clicking “X” gets rid of the currently-selected entry. You will see these conventions appear consistently in menus elsewhere in Blender’s new, revamped interface.

User Preferences Window New[edit]

Warning: Display title "Blender 3D: Noob to Pro/Blender 2.5x User Preferences" overrides earlier display title "Blender 3D: Noob to Pro/Blender 2.5x Windowing System".


Saving User Preferences[edit]

Most other applications have a place to keep user-configured settings (including document defaults), separate from any actual documents the user creates. Blender works in a slightly different fashion: all your user-configured settings are saved in every document you create. Each time you create a new Blender document, it actually just reloads your default document, which is called startup.blend. To save your current state as the default document, press  CTRL + U . This will save everything you’ve done to the current in-memory document, including objects and materials created, to startup.blend. If for some reason you want to restore the default settings to how they were when you downloaded Blender, you can either delete that file, or click Load Factory Settings in the File menu.

Accessing User Preferences[edit]

You can open your preferences by selecting "user preferences" from the file menu. When you bring it up, you will see a row of buttons across the top:

Blender255UserPrefsTabs.png

These buttons select which section of your user preferences to display.

You can also choose it from the window type menu in any convenient window, since the User Peferences is a window type like any other. But if you save your prefences in this state, the next time you create a new document, it will have the preferences window open... probably not what you want.

Configuring Your Preferences[edit]

This tutorial only covers a couple of essential preferences, so you are able to get to modelling and other fun quicker. Feel free to browse through and tryout some of the preferences though, you can always restore the preferences to the factory setting if needed.

Auto Save[edit]

Blender User Preferences - Auto Save

Here we have the Auto Save options in Blender. They are on the first screen you see in the user preferences window by default, under the File tab. Here's a brief description of each control:

  • Auto Save Temporary Files - Toggle checkbox to control whether or not Blender automatically saves.
  • Save Preview Images -
  • Save Versions - This selection controls how many copies of one file Blender should save.
  • Recent Files - This selection controls how many files total Blender is allowed to keep
  • Timer - This selection controls how often files are auto-saved.

Number of Undo Levels[edit]

Blender User Preferences - Undo

This is the Undo options. These options are located under the Editing tab in the user preferences window. Brief descriptions of the controls:

  • Global Undo -
  • Steps - This selection simply controls the number of times you can undo. How many is dependent on your system memory. For example, if you have 4 GB you might consider increasing this number.
  • Memory Limit -

Numpad Emulation[edit]

Blender NumpadEmu

The numpad emulation option located under the Input tab allows you to use the keyboard number keys (the 0-9 keys above the qwerty keys) instead of the numpad keys. This feature is especially useful if you are using Blender from a laptop and do not have a standard numpad.

Properties Window New[edit]

The Properties Blender269PropertiesIcon.png window is where you will find most of the functions that Blender can perform with objects and materials, animation, rendering, etc. It is the area where you will see the greatest number of changes from earlier versions of Blender (in which, it was called the Buttons window). Hopefully you’ll agree the new layout makes it much easier and quicker to find things!

In the header of the Properties window, you will see a row of buttons that looks like this: Blender267PropertiesTabs.png The actual icons will vary depending on the type of object selected in the 3D view. In the default layout, the Properties window may be too narrow to show the entire row, in which case you can widen the window, click drag across the buttons with  MMB  to scroll the button row, or use your mouse wheel within them. Each of these buttons gives you access to a different context, or subsection of the Properties settings. Unlike older verions of Blender, there are no more “subcontexts” — no additional buttons will appear in the header when you click any of these.

The Contexts[edit]

Render Context Blender255RenderContextButton.png[edit]

Here we find the settings that control overall rendering of the final images, i.e. what resolution to use, output format, performance, post processing, etc.

Render Layers Context Blender267RenderLayersContextButton.png[edit]

Additional settings that offer finer control over rendering of the final images: which scene layers to render, which separate parts (passes) of the rendering process to actually perform, and how to group them into render layers (not to be confused with the scene layers) for input into subsequent compositing.

Note:

In versions of Blender prior to 2.67, these settings were combined into the Render Context.

 

Scene Context Blender255SceneContextButton.png[edit]

Contains settings for colour management, choosing which camera to use for rendering, and units and gravity settings for physical modeling.

You can also select another scene to be a “background” for this scene. That is, all renders of this (foreground) scene will also include the contents of the background scene, as though they had been copied into this scene. While the background appears in the 3D viewport when editing this scene, none of its contents are editable, or even selectable; that has to be done in the background scene itself.

World Context Blender255WorldContextButton.png[edit]

Settings that govern the environment in which the model is rendered. e.g. background sky color, mist and star settings, lighting etc.

Object Context Blender255ObjectContextButton.png[edit]

Settings that apply to all types of objects. e.g. overall transformations, layer assignments, grouping etc. The settings shown here (and any changes made) apply to the last object selected. This is also the case for the following object-specific contexts.

Object Constraints Context Blender255ObjectConstraintsContextButton.png[edit]

These settings limit the motion of the object for animation purposes. The limits can also be tied to the motion of other objects in various ways.

Object Modifiers Context Blender255ObjectModifiersContextButton.png[edit]

Settings for applying modifiers to the object geometry. These make changes to the geometry that only take effect at rendering time. Note: lamps, cameras and empty objects cannot have modifiers.

Object Data Context Blender267ObjectDataContextButtons.png[edit]

Settings specific to the type of object, e.g. mesh vertex groupings, text font, lamp settings, camera settings, etc. This is reflected in the icon, which changes according to the type of object selected.

Material Context Blender255MaterialContextButton.png[edit]

The material settings for an object control its appearance, e.g. its colour, whether it has a shiny or dull surface, how transparent it is, and so on.

Note:

The chosen rendering engine — Blender Internal (the default), Blender Game, or Cycles — will impact the choices available for material and texture settings.

 

Texture Context Blender255TextureContextButton.png[edit]

The texture settings specify patterns that break up the uniform appearance of a material. These patterns can affect the colour of the material, give it a rough surface, or modify it in other ways.

Particles Context Blender255ParticlesContextButton.png[edit]

An object can be set to emit particles, like smoke, flames or sparks. The concept of “particles” (and the underlying algorithms) also includes the generation of hair or fur. Particles can be entirely custom objects, to produce effects like blades of grass interspersed with flowers in a field, water droplets on a wet surface, or even scatterings of entire buildings to make up a large cityscape!

Physics Context Blender255PhysicsContextButton.png[edit]

Settings that control how the object reacts to forces similar to objects in the real world, e.g. whether it behaves like a rigid body that keeps its shape but can be knocked around, something soft e.g a pillow, or a flowing liquid.

Where Did The Old Stuff Go?[edit]

For those used to older (pre-2.5x) versions of Blender...

The old Logic Context has been moved into its own window type, the Logic Editor.

The old Script Context is gone. Python scripting is now much more closely integrated into the Blender UI, and old scripts will not work anyway.

The functions of the other contexts have been rearranged into the new contexts as listed above. Once you get used to the new arrangement, it should make much more sense than the old one.

3D View New[edit]

Warning: Display title "Blender 3D: Noob to Pro/Blender 2.5x 3D View" overrides earlier display title "Blender 3D: Noob to Pro/Blender 2.5x User Preferences".


The 3D View looks slightly different in Blender 2.5x:

Blender2553DViewPlusShelves.png

The obvious visible difference is the addition of shelves: the Tool Shelf on the left, and the Object Properties on the right. You can toggle the visibility of these by pressing  T  for the Tool Shelf and  N  for the Object Properties. Alternatively you can drag the inner edge of the shelf to the window edge to make it disappear. Whichever way you do it, when a shelf is hidden, this symbol Blender255RevealShelfIcon.png will appear in the corner of the window, and can be clicked to make the shelf reappear.

Note:

The Spacebar Menu: In previous versions of Blender, pressing the spacebar would bring up a copy of the main Blender menu hierarchy. In 2.5x, it brings up a scrolling, searchable menu of all applicable operators. Type some text into the box at the top to restrict the items shown to those containing the specified text as a substring.

 

Apart from the above, operating in the 3D view is still largely the same.

Note:

The Add menu is directly accessible via the  SHIFT + A  hotkey.

 

However, some keyboard shortcuts from older Blender versions may not work any more. They may yet make a reappearance as development of the 2.5x version continues. But in any case, most of the operations are now also accessible from the menus in the window header, so keyboard shortcuts are no longer the only way to get to them.

Blender Memory Management[edit]

Note:

This section may be a bit bewildering on first reading. If you don’t understand it right away, don’t worry too much; but as you work more and more with Blender, making copies of objects, or sharing settings between objects, feel free to come back and re-read this and hopefully it will make some subtleties of Blender’s behaviour clearer.

 

Datablocks And Users[edit]

It is helpful to understand how Blender manages memory. Just about everything in a Blender document—objects in scenes, scenes themselves, materials, textures, whatever—is stored in a datablock. Each datablock has a name, which must be unique among datablocks of the same type. Each datablock may be referenced from one or more places, mostly in other datablocks—in Blender parlance, it has one or more users. For example, several different objects might share the same material, so when you change the characteristics of the material, it automatically changes the appearance of all those objects.

If the number of users of a datablock drops to zero, it still stays around in memory, but it will not be saved when the document is saved. Thus, if you save and reload the document, all the datablocks with zero users will disappear. (In some cases you may need to save and reload a couple of times before all zero-user datablocks disappear.)

But up until that point, the datablock will continue to appear in the relevant popup menus, so you can reassign it to more users.

You can also assign a fake user to a datablock; this is what the “F” button is for in the popup menus that list datablocks of that type. This ensures that the user count never goes to zero, so the datablock always gets saved in the document even if it has no real users. This is useful for “library” documents, which can contain collections of useful materials and textures, say, that can be linked or imported into other documents, without also having to include dummy objects in the library just to ensure those materials and textures get saved.

For example, here is the widget that lets you choose the material for an object:

Blender259ObjectMaterial.png

The main part shows the name of the current material, which is editable. The X button breaks the link to this material and decrements its number of users by one, while the F button assigns a fake user to this material. The + button lets you create a new material.

The material symbol on the left pops up a list of existing materials to choose from, plus a search box to search all existing materials:

Blender259ObjectMaterialMenu.png

Note the entry with the 0 symbol next to it; that currently has a user count of zero, and will disappear when the document is saved and reloaded, if it is not further used.

The widget also displays the current user count if it is greater than 1:

Blender259ObjectMaterialUsers.png

In this case the count was incremented because the F button was selected.

Note:

Clicking the number (if it’s greater than 1) makes a copy of the Material, attached only to this particular user. The copy has a user count of 1, while the original has its user count decremented by 1.

 

This is the basis of the (slightly confusing) distinction in Blender between object datablocks and object data datablocks. Object datablocks contain the information common to all the types of objects in the 3D scene, regardless of whether they’re mesh objects, lamp objects, camera objects or whatever; whereas the object data datablocks contain the information specific to that instance of the type of object, e.g. the vertex, edge and face definitions for this particular mesh you might be using, or the colour and energy of a lamp you've set up for your project, or the field of view of a camera you have.

That leads us to the difference between the two object duplication commands,  SHIFT + D  and  ALT + D : the former duplicates both the object datablocks and the object data datablocks (though this can be controlled in your User Preferences), while the latter only duplicates the object datablock. That means that in the first case the two objects are truly independent, but in the second case the new object continues to share the same object data datablock so a change in one will result in a change in both of them. So, for instance, if you use  ALT + D  on a mesh object and edit the vertices, edges or faces on one copy, the other copy will also be affected.

What is a Mesh?[edit]

The most fundamental step in the 3D development process is modeling, which entails creating 3D models of objects.

Blender supports many modeling techniques. "Mesh modeling" is the most basic and common modeling technique.

In this module, you'll learn the parts of a mesh, and you'll construct 2D meshes on paper and using Blender. You'll also learn how to create, select, and grab vertices in Vertex select mode.

Definitions[edit]

A mesh is a collection of vertices, edges, and faces that describe the shape of a 3D object:

  • A vertex is a single point. (The plural of vertex is "vertices")
  • An edge is a straight line segment connecting two vertices.
  • A face is a flat surface enclosed by edges. (Some other applications call these "polygons")

An Exercise[edit]

To give you a feel for how the components of a mesh fit together, you'll now draw a 2D mesh on paper.

Your sketch might look like this.
  1. Get a piece of paper and a pen or pencil.
  2. Draw three dots that are a couple centimeters (about an inch) apart from each other.
    • Each dot represents a vertex in the mesh.
  3. Connect two of the dots with a line segment.
    • The line segment represents an edge in the mesh.
  4. Draw two more edges so that all three vertices are connected.
  5. You've drawn a triangle; fill it in.
    • The area you filled in is a face.
  6. Now draw a fourth vertex (dot) on the paper.
  7. Connect the new vertex to two of the vertices you've drawn previously.
  8. You now have another triangle; fill it in to create the second face.

Could you imagine creating a mesh of faces in 3D space? That's what mesh modeling boils down to.

You can keep filling up the paper with more vertices, edges, and faces if you want. You may want to try and create something interesting (like a letter of the alphabet) with your triangles.

More about Meshes[edit]

A character from the "Yo Frankie!" 3D video game in Edit Mode, showing edges and faces.
The model is "(c) copyright Blender Foundation: apricot.blender.org".

Early versions of Blender supported faces only with three edges (triangles) or four edges (called quads). However, faces with five or more edges (so-called N-gons) are supported in Blender starting from version 2.63. Before Blender 2.63, for creating a new face you'd had to select 3 or 4 verts in order and then create the face, repeating the process for every new polygon needed. Version 2.63 and following versions with BMesh, you can create N-gons, regardless the number of verts.[1]

Examine a 3D video game or CGI character for a while. Believe it or not, it is made up of little faces joined together. With modern technology, of course, there can be a lot of faces, so they may be tiny and hard-to-see. Surfaces that appear curved are composed of very many individual flat faces.

When you edit objects in Blender, you'll see every vertex and edge. However, vertices and edges are never rendered; only faces are rendered. The purpose of vertices is to provide 3D control points for faces.

Another Exercise[edit]

While it's possible to construct 3D meshes vertex-by-vertex, this is rarely done. However, doing it once the hard way will help you appreciate the powerful modeling tools built in by Blender. Along the way, you'll learn about Edit Mode and the grab tool, both of which you'll need in the next module.

First, summon the default cube:

  1. Launch Blender.
  2. If the NumLock indicator on your keyboard is unlit, press  NumLock  so that numpad hotkeys will work properly.
  3. Load the factory settings using File → Load Factory Settings.

(If you're unsure what  LMB  means, please review the "Keystroke, Button, and Menu Notation" module.)

Because you loaded the factory defaults, the 3D manipulator will be enabled. For mesh editing, it helps to turn the manipulator off:

  1. Make sure the 3D View window is active.
  2. Press  Ctrl + Space  to toggle the manipulator on or off. You also could turn it on/off with the manipulator button on the 3D View header.
In Object Mode, the cube will look like this.

Because you just loaded the factory defaults, Blender should be in Object Mode with the default cube selected.

In order to modify the cube's mesh, you must put Blender into Edit Mode. (Edit Mode is a special mode for making changes to a single object.)

  1. Press  Tab  once to go into Edit Mode on the cube.
In Edit Mode, the cube will look like this.
Edit Mode indicator in the 3D View header.
Note:

 Tab  puts Blender into Edit Mode only if it's in a different mode to start with. If it's already in Edit Mode,  Tab  returns it to whatever mode it was in previously. So pressing  Tab  a second time would put Blender back into Object Mode.

 

Select mode buttons in a 3D View header, showing Vertex select mode active.

Edit Mode has three (sub-)modes for selecting vertices, edges, and faces. Because you just loaded the factory defaults, you should be in Vertex select mode. In Vertex select mode, vertices show up as yellow, black, or white dots when they're selected and as pink dots when they're not. Because you just loaded the factory defaults, all eight vertices of the cube should be selected.

In Blender 2.59/2.60 the vertex(ices) that are either unselected/selected are the following colors: Unselected will be black; Currently selected will be white; Already selected (other than the current selection) will be orange. Also note that these colors correspond to edge selections as well.

To clear the boards for your first model, delete all of the cube's vertices:

  1. Press  X 
  2. A "Delete" menu will pop up. Choose Vertices.

Now you can repeat the previous exercise using mouse and monitor instead of pen and paper.

After step 3
  1. Create a vertex by clicking with