Jump to content

Blender 3D: Noob to Pro/Print version

From Wikibooks, open books for an open world

Unit 1: Knowing before Making

[edit | edit source]

Blender is a powerful and complex 3D modeling and rendering package. However, before you can make anything, you need to understand several concepts used in 3D modelling and related fields. Examples include:

  • Understanding the process of 3D modeling and rendering
  • Understanding how the axis and 3D coordinates work in Blender.
  • Understanding orthographic and perspective views.
  • Local coordinates, parent objects, and child objects.
  • Blender's user interface and how to navigate it.
  • Viewing a scene from different camera angles

Don't be scared by their long names; a lot of these are actually pretty intuitive and easy to grasp. Of course, since you're not doing any actual modelling in this unit, you might be tempted to skip ahead, and that's completely fine! Just know that understanding these concepts well will help you a lot in the long run, and proceeding through tutorials in order will build a strong foundation for you to build on. Prior knowledge also plays a huge part in this, so if you're coming from other 3D software, you should already be familiar with these concepts.

That said, the actual fun (making stuff in Blender) comes in the next unit. However, keep in mind that Blender is not the kind of software you can jump into and experiment with. It's notorious for having a steep learning curve. It's less like exploring an unfamiliar city and more like flying a spaceship; if you hop into the pilot's seat without knowing the fundamentals, it's going to be near impossible to get off the ground.

Blender-specific terminology.

[edit | edit source]

Like any subject, 3D graphics has its own words and terminology used to describe specific ideas. In this book, important words are highlighted and defined on their first use. If you've missed or forgotten the meaning of a word, try looking it up in the Glossary.

Things you'll need.

[edit | edit source]

In order to follow the tutorials, you need a computer with Blender installed. You can download the latest Blender release here.

Depending on your system, you may also need the appropriate Python installation. Each version of Blender requires a specific version of Python, but it's usually packaged with Blender.

The Blender team has the Blender Long Term Support program which provides a stable Blender version with 2 years of support. During the 2 year support window, no new features, UI changes, API changes or other enhancements will be done; only critical fixes will be applied. This allows teams working on long-lasting blender projects to use a single supported version over a 2 year period. Long term versions are indicated below with the LTS suffix and a year indicating the last year of support.

Blender version Python version
2.79 3.5
2.83 LTS 2022 3.7
2.90 3.7
2.93 LTS 2023 3.9
3.0 3.9
3.1 3.10
3.3 LTS 2024 3.10
3.4 3.10
3.5 3.10
3.6 LTS 2025 3.10
4.0 3.10
4.1 3.11

You can check Python version on Scripting workspace using:

import sys
print(sys.version)
Installation instructions

Since Blender is open-source software, you can download the source code and build it yourself, but it's easier to download a pre-built binary. As of Blender 4.0, compiled releases are provided for the following operating systems:

  • Windows 8.1, 10, and 11
  • macOS 11.2 Intel or Apple Silicon
  • Linux with glibc 2.28 or newer

Along with the website, many Linux distributions have Blender available in their package repositories, though it may be a slightly older version. You can use your system's package manager to download and install the package. It's also available on steam.

Windows users can also choose between an executable installer ("setup wizard") and a ZIP archive.

After the installation process is finished, Blender should appear in the Graphics section of your desktop environment application menu.

You may also want to download a 2D image editor, such as GIMP, Paint.NET, or Photoshop or a media player, such as VLC.

It's a good idea to have pencil and paper handy for sketching and taking notes. There's a lot to absorb. Taking notes as you go will pay dividends later.

Where to Go for Help

[edit | edit source]

If you get stuck, you can ask for help from other Blender users in the appendices.

Additional Resources

[edit | edit source]

Many modules have a section like this at the bottom, listing websites with information on the topics covered in the module.

What Blender Can Do

[edit | edit source]

In this module, you'll learn what Blender does, both in terms of the product (images) and the process (3D modeling).


Blender is a free software package for authoring "three-dimensional" (3D) graphics (also known as computer graphics or “CG”), including still images, games, and video.

While the end-product of most Blender projects is a two-dimensional (2D) raster image on a flat surface (be it a monitor, movie screen, or sheet of paper) except for Head Mounted Virtual Reality applications, the images are said to be "3D" because they exhibit the illusion of depth. In other words, someone looking at the image can easily tell which parts are meant to be closer and which are farther away.

An Example

[edit | edit source]

Here's a realistic still image that was created with Blender.

"A Lonely House", by Mayqel

Look closely at the building.

  • Because it is obscured by the building, you can tell that the tree-lined hillside is behind the building instead of vice versa.
  • The way the top and bottom edges of the front wall appear to converge toward the base of the tree allow you to judge the angle between the front wall and your viewpoint.
  • Your brain interprets dark portions of the wall as shadows, allowing you to estimate where the light is coming from, even though the sun is outside the frame of the image.

While an illusion of depth can be authored by hand with 2D graphics software (or a paintbrush!), Blender provides a much easier way.

It's likely that the lonely house never existed outside of the artist's mind. Instead of building a big set on a rural lot in Germany, waiting for the right light, and photographing it, the author built a scene in a virtual 3D world—one contained inside a computer. This is called CGI (Computer Generated Imagery). They then used Blender to render the scene (convert it into a 2D image). You can view more of what Blender can do at the Blender gallery: http://www.blender.org/features/

Steps in the 3D Production Process

[edit | edit source]

To produce an image like the one above involves two major steps to start with:

  • Modelling, which is the creation of your miniature 3D world, also known as a model or scene. This involves defining the geometry of the objects, making it look like they are made out of particular materials, setting up the lighting, and defining a camera viewpoint.
  • Rendering, which is the actual generation of the image of the world from the viewpoint of the camera (taking a “photograph” of the scene, if you like), for your audience to enjoy.

3D is often used to produce not just single still images, but animations as well. This requires some additional steps:

  • Rigging — setting up a rig, namely a way of deforming (changing the shape of) a character in various repeatable ways to convincingly mimic joint movements, facial expressions and other such actions of real-life people or animals.
  • Posing — choreographing the positions of the objects and their parts in the 3D scene over time, using the previously-created animation rigs
  • Rendering now involves creating a whole sequence of frames representing movement over time, rather than just a single still frame.

But that’s not all. There are frequently additional processes to embellish the results of the above, to make them look more realistic:

  • Sculpting — a more organic form of modelling objects by shaping them as though they were made out of clay. This produces more complicated, irregular shapes which mimic real objects found in nature, as opposed to clean, simple, geometrical ones which mostly only exist in the world of mathematics.
  • Texture painting — You’re probably familiar with programs that let you paint an image on a 2D digital canvas. Such programs are commonly used in 3D production, to create textures which are “wrapped” around the surfaces of 3D objects to give them a more interesting appearance. 3D programs also often allow direct painting on the surfaces of those objects, so the effect of the design can be observed immediately, instead of having to go through a separate paint-on-a-flat-surface-then-wrap sequence of steps.
  • Physical modelling — simulating the behaviour of real-world objects subject to real-world forces, for example hard balls colliding, soft cloth draping itself over an obstacle under gravity, water flowing and pouring. Mathematical formulas are available for these that give results very close to real life, all you need is the computing power to calculate them.
  • Motion capture, or mocap: producing convincing animations, particularly ones that look like the movements of real people (walking, running, dancing etc) can be hard. Hence the technique of capturing the motions of live actors, by filming them with special markers attached to strategic points on their bodies, and doing computer processing to track the movements of these markers and convert them to corresponding movements of an animation rig.
  • Compositing — this is where 3D renders are merged together with real photographic/live-action footage, to make it look like a rendered model is in the middle of a real-world scene, or conversely a real live actor is in the middle of a rendered scene. If done with proper skill, in particular due care to matching the effects of lights and shadows, the viewer becomes unable to tell what is real and what is not!

And just to add another complication to the mix, there are two kinds of rendering:

  • Real-time rendering is rendering that has to happen under tight time constraints, typically for interactive applications like video gaming. For example, most gamers expect the screen to be updated 60 times per second in order to render smooth motion and respond quickly enough to player actions. These time constraints impose major limitations on the kinds of rendering techniques that can be used.
  • Non-real-time rendering is where the time constraints are not so tight, and quality is the overriding factor. For example, when producing a single still frame, it may not matter so much that it takes minutes or hours to do so, because the beauty and detail of the final image is worth it. When rendering a Hollywood-quality movie, it may still take hours per frame, but the use of a render farm of hundreds or thousands of machines, all working on different frames at the same time, allows the entire sequence to complete in just a few weeks.

But wait, there’s more: There are also some areas, which might be considered to be stepping outside of traditional 3D production work, where Blender provides functionality:

  • Video editing — having rendered your animation sequences and shot your live-action footage, you will want to combine them in a properly-timed linear sequence to tell a coherent story.
  • 3D printing — Many people are interested in creating physical objects using 3D printers. The shape data may be obtained from real objects with 3D scanning, or it may be created from scratch using 3D modelling, or you can even combine both processes.

Blender is a capable tool for every single one of these processes. There’s quite a lot there, isn’t there? But don’t be too intimidated: this Wikibook will take things step by step, and you will be able to produce some fun stuff from early on.

Additional Resources

[edit | edit source]

3D Geometry

[edit | edit source]


If you haven't previously studied 3D graphics, technical drawing, or analytic geometry, you are about to learn a new way of visualizing the world, an ability that's fundamental to working with Blender or any 3D modeling tool.

3D modeling is based on geometry, the branch of mathematics concerned with spatial relationships, specifically analytical geometry, which expresses these relationships in terms of algebraic formulas. If you have studied geometry, some of the terminology will be familiar.

Coordinates And Coordinate Systems

[edit | edit source]

Look around the room you’re in. The odds are it will have a cuboidal shape, with four vertical walls at right angles to each other, a flat, horizontal floor, and a flat, horizontal ceiling.

Now imagine there’s a fly buzzing around the room. The fly is moving in three-dimensional space. In mathematical terms, that means its position within the room at any given moment, can be expressed in terms of a unique combination of three numbers.

There are an infinite number of ways —coordinate systems— in which we could come up with a convention for defining and measuring these numbers, i.e. the coordinates. Each convention will yield different values even if the fly is in the same position. Coordinates only make sense with reference to a specific coordinate system! To narrow down the possibilities (in a purely arbitrary fashion), let us label the walls of the room with the points of the compass: in a clockwise direction, North, East, South and West. (If you know which way really is north, feel free to use that to label the walls of your room. Otherwise, choose any wall you like as north.)

Consider the point at floor level in the south-west corner of the room. We will call this (arbitrary) point the origin of our coordinate system, and the three numbers at this point will be . The first of the three numbers will be the distance (in some suitable units, let’s say metres) eastwards from the west wall, the second number will be the distance north from the south wall, and the third number will be the height above the floor.

Each of these directions is called an axis (plural: axes), and they are conventionally labelled X, Y and Z, in that order. With a little bit of thought, you should be able to convince yourself that every point within the space of your room corresponds to exactly one set of values, and that every possible combination of values, with , and (where is the east-west dimension of your room, is its north-south dimension, and is the height between ceiling and floor) corresponds to a point in the room.

The following diagram illustrates how the coordinates are built up, using the same colour codes that Blender uses to label its axes: red for X, green for Y and blue for Z (an easy way to remember this if you're familiar with RGB is the order -- Red X, Green Y, Blue Z). In the second picture, the x value defines a plane parallel to the west wall of the room. In the third picture, the y value defines a plane parallel to the south wall, and in the fourth picture, the z value defines a plane parallel to the floor. Put the planes together in the fifth picture, and they intersect at a unique point.

Another simple way to understand what the coordinates of a point say (x,y,z) means is, if one starts from origin and moves x, y, and z units of distance parallel to x, y, and z axes respectively, in any sequence, one will reach that point. Thus, for example, a coordinate of (3,4,5) means the point which is reached when one moves, starting from origin, 3 units of distance along x-axis, 4 units of distance along y-axis and 5 units of distance along z-axis.

This style of coordinate system, with the numbers corresponding to distances along perpendicular axes, is called Cartesian coordinates, named after René Descartes, the 17th-century mathematician who first introduced the concept. Legend has it that he came up with the idea after watching a fly buzzing around his bedroom!

There are other ways to define coordinate systems, for example by substituting direction angles in place of one or two of the distance measurements. These can be useful in certain situations, but usually all coordinate systems in Blender are Cartesian. However, in Blender, switching between these coordinate systems is simple and easy to do.

Negative Coordinates

[edit | edit source]

Can coordinate values be negative? Depending on the situation, yes. Here we are only considering points within our room. But suppose instead of placing our origin in the bottom southwest corner, we put it in the middle of the room, halfway between the floor and ceiling. (After all, it is an arbitrary point, we can place it wherever we like, as long as we agree on its location.) If the X-coordinate is the distance east from the origin, how do we define a point west of the origin? We simply give it a negative X-coordinate. Similarly, points north of the origin have a positive Y-coordinate, those south of it, have negative Y-coordinates. Points above the origin have a positive Z-coordinate, those below it, a negative Z-coordinate.

Handedness Of Coordinate Systems

[edit | edit source]

It is conventional for most Cartesian coordinate systems to be right-handed. To understand this, hold the thumb, index finger and middle finger of your right hand perpendicular to each other:

Figure 1: The three axes form a right-handed system

Now orient your hand so your thumb points along the X-axis in the positive direction (direction of increasing coordinate numbers), your index finger along the positive Y-axis, and your middle finger along the positive Z-axis. Another way of looking at it is, if you placed your eye at the origin, and you could see the three arrows pointing in the directions of positive X, positive Y and positive Z as in Figure 1, the order X, Y, Z would go counter clockwise.

Figure 2: Another view of right-handed system

Another way to visualize this is to make a fist with your right hand, with your curled fingers towards you. Stick out your thumb directly to the right (X). Now aim your pointer finger straight up (Y). Finally, make your middle finger point toward yourself (Z). This is the view from directly above the origin.

Axes Of Rotation

[edit | edit source]

Consider a spinning sphere. Every point on it is moving, except the ones along the axis. These form a motionless line around which the rest of the sphere spins. This line is called the axis of rotation.

More precisely, the axis of rotation is a point or a line connecting points that do not change position while that object rotates, drawn when the observer assumes he/she does not change position relative to that object over time.

Conventionally, the direction of the axis of rotation is such that if you look in that direction, the rotation appears clockwise, as illustrated below, where the yellow arrow shows the rotational movement, while the purple one shows the rotation axis:

To remember this convention, hold your right hand in a thumbs-up gesture:

If the rotation follows the direction of your curled fingers, then the direction of the axis of rotation is considered to be the same as the direction which the thumb is pointing in.

This gesture is a different form of the right-hand rule and is sometimes called the right-hand grip rule, the corkscrew-rule or the right-hand thumb rule. From now on we will refer to it as 'the right-hand grip rule'.

When describing the direction of a rotating object, do not say that it rotates left-to-right/clockwise, or right-to-left/counterclockwise. Each of these on their own are meaningless, because they're relative to the observer. Instead of saying this, find the direction of the axis of rotation and draw an arrow to represent it. Those who know the right-hand grip rule will be able to figure out what the direction of rotation of the object is, by using the rule when interpreting your drawing.

Additional Resources

[edit | edit source]

Orthographic Views

[edit | edit source]


Orthographic Views

[edit | edit source]

An orthographic view (or projection) of a 3D scene is a 2D picture of it in which parallel lines appear parallel, and all edges perpendicular to the view direction appear in proportion, at exactly the same scale.

Orthographic views are usually aligned with the scene's primary axes. Edges parallel to the view axis disappear. Those parallel to the other primary axes appear horizontal or vertical. The commonly used orthographic views are front, side, and top views, though back and bottom views are possible.

Uniform scale makes an orthographic view very useful when constructing 3D objects, not only in computer graphics, but also in manufacturing and architecture.

Here's one way to think about the orthographic view:

Imagine photographing a small 3D object through a telescope from a very great distance. There would be no foreshortening. All features would be at the same scale, regardless of whether they were on the near side of the object or its far side. Given two (or preferably three) such views, along different axes, you could get an accurate idea of the shape of the object, useful for "getting the feel" of objects in a virtual 3D world where you're unable to touch or handle anything!

Example

[edit | edit source]

Here is a drawing of a staircase:

An isometric view of a staircase

and here are three orthographic views of the same staircase, each outlined in red:

Figure 1: "First Angle" Orthographic views of a staircase

The views are from the front, top, and left. Dashed lines represent edges that, in real life, would be hidden behind something, such as the left wall of the staircase. (Think of each view as an X-ray image.)

The leading edges of the steps are visible in both the front and top views. Note that they appear parallel and of equal length in 2D, just as they are in 3D reality.

Additional Resources

[edit | edit source]

Perspective Views

[edit | edit source]

As you know, the main reason for modeling 3D objects in Blender is to render images that exhibit the illusion of depth.

Orthographic views are great for building a house, but seriously flawed when it comes to creating realistic images of the house for use in a sales brochure. While a builder wants blueprints that are clear and accurate, a seller wants imagery that's aesthetically pleasing, with the illusion of depth. Blender makes it easy to use tricks like perspective, surface hiding, shading, and animation to achieve this illusion.

How does perspective work?

The essence of perspective is to represent parallel edges (in a 3D scene) by edges (in the 2D image) that are not parallel. When done correctly, this produces foreshortening (nearby objects are depicted larger than distant ones) and contributes to the illusion of depth.

Perspective is challenging to draw by hand, but Blender does it for you, provided you give it a 3D model of the scene and tell it where to view the scene from.

Note:

Blender only supports 3-point perspective, not 1-point or 2-point.

If you're confident you understand perspective, you can skip the rest of this module and proceed to the "Coordinate Spaces in Blender" module.

One-point Perspective

[edit | edit source]
Figure 1: 1-Point Perspective.

Drawing classes teach various kinds of perspective drawing: one-point perspective, two-point perspective, and three-point perspective. In this context, the word "point" refers to what artists call the vanishing point.

When you're looking at a 3D object head-on and it's centered in your view, that is an example of one-point perspective.

Imagine looking down a straight and level set of train tracks. The tracks appear to converge at a point on the horizon. This is the vanishing point.

The image on the right is a 2D image of a cubic lattice or framework. Like any cube, it has six square faces and twelve straight edges. In the 3D world, four of the edges are parallel to our line-of-sight. They connect the four corners of the nearest square to the corresponding corners of the farthest one. Each of these edges is parallel to the other three.

In the 2D image, those same four edges appear to converge toward a vanishing point, contributing to the illusion of depth. Since this is one-point perspective, there is a single point of convergence at the center of the image.

Two-point Perspective

[edit | edit source]
Figure 2: 2-Point Perspective.

Now the cube is at eye level, and you're near one of its edges. Since you're not viewing it face-on, you can't draw it realistically using one-point perspective. The horizontal edges on your left appear to converge at a point on the horizon to the left of the cube, while those on the right converge to the right. To illustrate the cube with a good illusion of depth, you need two vanishing points.

Three-point Perspective

[edit | edit source]
3-Point Perspective.

Now imagine you're above the cube near one of its corners. To draw it, you'd need three vanishing points, one for each set of parallel edges.

From that perspective, there are no longer any edges which appear parallel. The four vertical edges, the four left-right edges, and the four in-out edges each converge toward a different vanishing point.

Additional Resources

[edit | edit source]

Coordinate Spaces in Blender

[edit | edit source]
Figure 1: Objects in a three dimensional space. In the center of the coordinate system is the origin of the global coordinate system.

We'll start looking at how 3D scenes are represented in Blender.

As was explained in the "3D Geometry" module, Blender represents locations in a scene by their coordinates. The coordinates of a location consist of three numbers that define its distance and direction from a fixed origin. More precisely:

  • The first (or x-) coordinate of the location is defined as its distance from the YZ plane (the one containing both the Y and Z axes). Locations on the +X side of this plane are assigned positive x-coordinates, and those on the -X side are given negative ones.
  • Its second (or y-) coordinate is its distance from the XZ plane, with locations on the -Y side of this plane having negative y-coordinates.
  • Its third (or z-) coordinate is its distance from the XY plane, with locations on the -Z side of this plane having negative z-coordinates.

Thus the origin (which lies at the junction of all three axes and all three planes) has the coordinates (0, 0, 0).

Note:
The images for this tutorial were produced using Blender v2.46.

Global and local coordinates

[edit | edit source]

Blender refers to the coordinate system described above as the global coordinate system, though it's not truly global as each scene has its own global coordinate system. Each global coordinate system has a fixed origin and a fixed orientation, but we can view it from different angles by moving a virtual camera through the scene and/or rotating the camera.

Global coordinates are adequate for scenes containing a single fixed object and scenes in which each object is merely a single point in the scene. When dealing with objects that move around (or multiple objects with sizes and shapes), it's helpful to define a local coordinate system for each object, i.e. a coordinate system that can move with, and follow the object. The origin of an object's local coordinate system is often called the center of the object although it needn't coincide with the geometrical center of the object.

3D objects in Blender are largely described using vertices (points in the object, singular form: vertex). The global coordinates of a vertex depend on:

  • the (x, y, z) coordinates of the vertex in the object's local coordinate system
  • the location of the object's center
  • any rotation (turning) of the local coordinates system relative to the global coordinate system, and
  • any scaling (magnification or reduction) of the local coordinate system relative to the global coordinate system.

For example, the teacup in Figure 1 is described by a mesh model containing 171 vertices, each having a different set of local (x, y, z) coordinates relative to the cup's center. If you translate the cup (move it without rotating it), the only bits of the model that have to change are the global coordinates of the center. The local coordinates of all its vertices would remain the same.

Coordinates of child objects

[edit | edit source]
Figure 1b: A parent serves as the source of the global coordinates for its child object. The child is the cup; the parent's orientation is shown with the colored arrows.
Animation of the above

Any object can act as a parent for one or more other objects in the same scene, which are then referred to as its children. (An object cannot have more than one direct parent, but parent objects may themselves be the children of other objects.)

If an object has a parent, its position, rotation, and scaling are measured in the parent's local coordinate system, almost as if it were a vertex of the parent. i.e. the position of the child's center is measured from the parent's center instead of the origin of the global coordinate system. So if you move a parent object, its children move too, even though the children's coordinates have not changed. The orientation and scaling of a child's local coordinate system are likewise measured relative to those of its parent. If you rotate the parent, the child will rotate (and perhaps revolve) around the same axis.

Parent-child relationships between objects make it simpler to perform (and animate) rotations, scaling and moving in arbitrary directions. In Fig. 1b the teacup is a child object of the coordinate cross on the right. That cross is itself the child of an invisible parent. (It is both a parent and child.) In the cup's local coordinate system, it is not rotating, but as the cross on the right rotates around its Z axis, it causes the cup to rotate and revolve. In real animations, it will be much easier when the character holding the cup rotates, the cup changes its position respectively.

View coordinates

[edit | edit source]
Figure 2: View coordinates and Projection Plane

Taking the viewer of the scene into consideration, there is another coordinate space: the view coordinates. In Fig. 2 the viewer is symbolized by the camera. The Z axis of the view coordinates always points directly to the viewer in orthographic projection. The X axis points to the right, the Y axis points upwards (Fig. 3).

Figure 3: View coordinates in viewing direction

In fact you always work in view coordinates if you don't set it any other way*. This is particularly useful if you have aligned your view prior to modeling something, e.g. if an object has a slanted roof and you want to create a window to fit in that roof, it would be very complicated to build the window aligned to the local coordinate system of the object, but if you first align your view to the slanted roof, you can easily work in that view coordinate system.

(* In the Blender 2.6 series, the default has been changed to global coordinates. View coordinates remain as an option.)

If you work in one of the three standard views (Front/Top/Side) the alignment of the view coordinates fits the global coordinates. Therefore, it is quite natural to model in one of the standard views and many people find this the best way to model.

Normal coordinates

[edit | edit source]
Figure 4: Normal coordinate spaces for faces. The normal is shown in blue.

Although Blender is a 3D program, only objects' faces are visible. The orientation of the faces is important for many reasons. For example, in our daily lives it seems quite obvious that a book lies flat on a table. This requires the surface of the table and that of the book to be parallel to each other. If we put a book on a table in a 3D program, there is no mechanism that forces these surfaces to be parallel. The artist needs to ensure that.

The orientation of a face can be described with the help of the so-called surface normal. It is always perpendicular to the surface. If several faces are selected, the resulting normal is averaged from the normals of every single face. In Fig. 4 the normal coordinates of the visible faces are drawn.

This concept can be applied to individual points on the object, even if the points themselves have no orientation. The normal of a point is the average of normals of the adjacent faces.

UV Coordinates

[edit | edit source]

In later parts (for example, talking about textures) you will come across coordinates labelled “U” and “V”. These are simply different letters chosen to avoid confusion over “X”, “Y” and “Z”. For example, a raster image is normally laid out on a flat, two-dimensional plane. Each point on the image can be identified by X and Y coordinates. But Blender can take this image and wrap it around the surface of a 3D object as a texture. Points on/in the object have X, Y and Z coordinates. So to avoid confusion, the points on the image are identified using U and V to label their coordinates instead of X and Y. We then refer to “UV mapping” as the process of determining where each (U, V) image point ends up on the (X, Y, Z) object.

User Interface Overview

[edit | edit source]

Blender's user interface (the means by which you control the software) is not particularly easy to learn. However, it has improved over time and is expected to continue doing so. The current version of the Blender software is available for download from the Blender Foundation's website.

The tutorials in this section will familiarize you with the basics of the user interface. By the end of this section, you should be able to:

  • resize, split, and merge any Blender window;
  • change the type of any Blender window;
  • access user preferences;
  • access panels containing buttons and other controls;
  • change the viewpoint of a viewport.

For those new to Blender, this is a fundamental section of the book.

Advice on Customization

[edit | edit source]

Blender is a complex software package with many customizable features. You can customize the user interface to assign new functions to buttons and hotkeys. In fact, you can change almost anything to suit yourself. However, this complicates the giving and following of directions. It is recommended you adhere to the default screen arrangements of Blender in order to be able to follow the remaining parts of these tutorials. Blender ships with 4 to 5 screen-content arrangements which are suitable for almost any kind of job you'll want to use it for - from creating motion and animation to making games.

We recommend leaving Blender's user interface in its "factory settings" while working through the Noob to Pro tutorials. At the very least, wait until you've mastered the basics before you customize the interface — and we know you definitely will when you master it!

Keystroke, Button, and Menu Notation

[edit | edit source]

As you read through these tutorials, you will encounter cryptic codes such as  SHIFT + LMB  and Timeline → End Frame. They describe actions you perform using the keyboard and mouse. The notation used in this book comes from the standard used by the Blender community. We will try to import those standards here to facilitate our studies.

If you're reading this book online, you may wish to print this page for future reference. In addition, or as an alternative, you can bookmark it in your browser for faster reference.

Hotkeys

[edit | edit source]
A typical numpad

Most computer keyboards have number keys in two different places. A row above the letters, and in a numpad (numeric keypad) to the right of the keyboard. While many applications use these two sets of keys interchangeably, Blender does not. It assigns different functions to each set. If you're using a laptop keyboard without a separate numeric keypad, this might cause some difficulty. You'll need to use your function key to do some things. It is possible to indicate to Blender the type of keyboard you are using, but we strongly recommend you use a standard external keyboard if you use a laptop for these tutorials as it will make your studies and usage of Blender much more straightforward and enjoyable.

This book often assumes your keyboard has a numpad. If yours doesn't, consult the tutorial on Non-standard Input Devices for alternative ways to access the numpad's functions.

Key Notation

[edit | edit source]
Notation Corresponding key or action
 Alt  The Alt key (known as ⌥ Option on Apple keyboards)
 Cmd  The ⌘ Command key also known on other platforms as the ⌘ Windows key or ❖ Super key
 Ctrl  The ⌃ Ctrl key (also known as the Control key)
 Fn  The Fn key (also known as the Function key, generally found only on laptops)
 Shift  The ⇪ Shift key
 Enter  The ↵ Return key (also known as the Enter key)
 Esc  The Esc key (also known as the Escape key)
 F1  through  F12  The function keys F1 through F12 (often in a row along the top of the keyboard)
 Space  The Spacebar
 Tab  The ↹ Tab key
 A  through  Z  The letters A to Z (on the keyboard)
 0key  through  9Key  The digits 0 to 9, placed above the letters on the keyboard
 Num0  through  Num9  The digits 0 to 9, placed on the numpad
 NumLock ,  Num/ ,  Num* ,  NUM− ,  Num+ ,  NumEnter , and  Num.  The NumLock, /, *, -, +, Enter, and . keys respectively, all located on the numpad.
 Delete  The Delete key
 Down Arrow  The ⇣ Down Arrow key
 Left Arrow  The ⇠ Left Arrow key
 Right Arrow  The ⇢ Right Arrow key
 Up Arrow  The ⇡ Up Arrow key

When a key is used in a module, it means press that key. For exammple:

  •  M  means "press the M key"
  •  Num0  means "press the 0 key thats found on the numpad."

Combinations that involve holding down a key while performing another action are written with a plus sign (+). For example:

  •  Shift + Tab  means "press  Tab  while holding down  Shift "
  •  Shift + Ctrl + F9  means "press  F9  while holding down both  Ctrl  and  Shift "

Mouse Notation

[edit | edit source]

Blender uses three mouse buttons and the scroll wheel, if you have one. If your mouse only has one or two buttons, consult the tutorial on Non-standard Input Devices for alternative ways to access the functions assigned to these buttons.

Notation Corresponding action
 LMB  click with the Left Mouse Button
 RMB  click with the Right Mouse Button
 MMB  press down on (don't turn) the scroll wheel or Middle Mouse Button
 SCROLL  turn the scroll wheel in either direction

Mouse and keyboard actions are often combined.  Shift + RMB  means to click  RMB  while holding down  Shift .

[edit | edit source]

Blender uses both pop-up and pull-down/pull-up menus. Many menus have sub menus (menus that are reached via another menu). If a menu item displays a triangle, that means it leads to a sub menu.

The File menu

You can move through items in a menu by either:

  • Moving the mouse pointer up and down
  • Pressing  Up Arrow  and  Down Arrow 

You can enter a sub menu by either:

  • Moving the mouse pointer to the right
  • Pressing  Right Arrow  while hovering over a menu item that shows a triangle on its side.

You can leave a sub menu by doing one of the following:

  • moving the mouse pointer to the left
  • pressing  Left Arrow 

To initiate a menu action, you can:

  • click  LMB 
  • press  Enter 

You can escape from a menu by:

  • moving the mouse pointer away from the menu
  • pressing  Esc 

For each menu, Blender remembers your last choice and highlights it for you the next time you enter the menu.

Notation

[edit | edit source]

Menu notation is fairly self-explanatory.

 Shift + A  Mesh → UV Sphere

Means:

  1. Press Shift+A
  2. In the menu that pops up, move through the items until Mesh is highlighted
  3. Enter the Mesh sub menu
  4. Move through the items until UV Sphere is highlighted
  5. Press Enter or click the left mouse button to initiate the action

Non-standard Input Devices

[edit | edit source]

This module is applicable only to users with non-standard input devices. If you have both a three-button mouse and a keyboard with a numpad, you can skip this module.


Keyboards lacking a numpad

[edit | edit source]

Most modern laptops have a pseudo-numpad, a set of keys in the main keypad which double as a numpad. The keys typically used for this purpose are:

 7key   8key   9key   0key 
 U   I   O   P 
 J   K   L   ; 
 M   ,Key   .Key   SLASH 

When used as a pseudo-numpad, these keys typically act as the following keys from a true numpad:

 Num7   Num8   Num9   Num/ 
 Num4   Num5   Num6   Num* 
 Num1   Num2   Num3   NUM− 
 Num0   NumENTER   Num.   Num+ 

The numpad functions of these keys can often be toggled with  F11  or  NUMLOCK  on PCs or with  F6  on Macs. Alternatively, you can often temporarily activate the numpad behavior by holding down  Fn .

If your keyboard has the alternate labellings but you don't know how they work, consult your laptop owner's manual.

As a last resort, you can use the "Emulate Numpad" feature of Blender. This will allow you to use the normal numeric keys as if they were numpad numerics. Instructions for enabling this feature may be found in the "User Preferences Windows" module.

Blender uses the numeric keypad quite a bit. If you envision using your laptop for this kind of work, it may be worth investing in a USB Numeric Keypad. On eBay, prices for simple external numpads start around $10 USD.

Non three-button mouse

[edit | edit source]

For single-button mouse users, make sure that Input for Blender 2.79 (under "User Preferences" on the left-most drop-down menu) → Emulate 3 Button Mouse is enabled.

On many computers with two-button mice,  MMB  can be emulated by simultaneously clicking  LMB  and  RMB . On Windows machines you'll need to enable this in the mouse settings in the Control Panel. On a Mac, open the Keyboard and Mouse preference pane and enable Use two fingers to scroll. Alternatively, by selecting Emulate 3 Button Mouse under User Preferences,  MMB  can be emulated by simultaneously clicking  Alt  and  LMB .

Recent IBM Thinkpad laptops allow you to disable the 'UltraNav' features of the middle mouse button in order to use it as a 'normal' third button. Alternatively, some laptops allow areas (called gestures) on the movement pad to act as  MMB  or  RMB , and these can be set up in the Control Panel in the Mouse Pointer options, selecting gestures and editing features there.

Apple single-button mouse

[edit | edit source]
Apple single-button mouse substitutions
Notation Single-button Substitute Description
 LMB   MB  the Mouse Button
 RMB   Cmd + MB  Apple key + the Mouse Button
 MMB   Alt + MB  Option (Alt) key + the Mouse Button

While Mac OS X natively uses both the  Ctrl + MB  and  Cmd + MB  to emulate  RMB , recent Blender releases for Mac OS X use only  Cmd + MB  for this purpose. This behavior is documented in the OSX Tips file that comes with the Mac version. You can also set the mouse to sense a right-click in System Preferences.

Note also that in the new, "unibody" design, the mouse button is under the trackpad, and the shortcut for  RMB  is clicking with two fingers simultaneously, which can be enabled in the System Preferences.

Laptops lacking a middle button but with a touchpad

[edit | edit source]

Many laptops have touchpads. Touchpads, also known as trackpads or in some cases as smart-pads, can use gestures to give the effect of  MMB . The default for an Elan® Smart-Pad is two-finger tapping equivalent to clicking a  MMB . Dragging two fingers is the same as turning a mouse wheel.

Tablet PCs

[edit | edit source]

To get the effect of  MMB  in a viewport, drag your pen around while holding down the  Alt  key.


Additional Resources

[edit | edit source]

Operating System-specific Issues

[edit | edit source]

This tutorial covers user-interface issues that are specific to particular operating systems or window managers. Read the section that applies to your computer; you may skip the rest.

GNU/Linux

[edit | edit source]

 Alt + LMB  is used for changing the angular view on two angular axes of the 3D View window, if  Alt + LMB  moves the current window, then there's a conflict with your window manager. You can resolve the conflict or use  Ctrl + Alt + LMB  or  MMB  instead. (Also, you may have activated Compiz->Rotate Cube. Default configuration for rotating the Cube is also  Ctrl + Alt + LMB ; you may have to change this binding to an alternative configuration.) If you are running KDE this can be resolved by:  RMB  on the title bar of the main Blender window → select Configure Window Behavior → go to Actions → Window Actions → in the Inner Window, Titlebar and Frame section → select the Modifier key to be  Alt  and set all the select boxes beneath it to Nothing. An alternate method within KDE might be to  RMB  click on the title bar of the main Blender window; then select AdvancedSpecial Application Settings...Workarounds and then click Block global shortcuts with Force selected and checked.

In Gnome, Click System → Preferences → Window Preferences. Look for the last three options Control, Alt and Super. Select Super. Or in Xfce, click Whisker → Settings → Window Manager Tweaks, and in the Accessibility pane, change Key used to grab and move windows to Super. Now you can press and hold  Cmd  or  ⊞  to drag windows around, and use  Ctrl  and  Alt  as normal.

Under KDE,  Ctrl + F1  through  Ctrl + F4  are by default configured to switch to the corresponding one of the first four desktops, while  CTRL + F12  brings up Plasma settings. You can change these in System Settings.

Alternatively you can suppress global shortcuts while inside blender by adjusting the kwin rules for this application, which you can access with a  RMB  click on the title bar of the window and pressing more actions->add program rule.

Gnome

[edit | edit source]

You'll want to disable the Find Pointer functionality in Gnome, which will impair your ability to use certain functions such as Snap to grid and the lasso tool. If your mouse pointer is being highlighted when you press and release  Ctrl , go to: Mouse in Gnome's Desktop Settings and uncheck the box Find Pointer.

Ubuntu

[edit | edit source]

As of Ubuntu versions prior to about 09.10 (“Karmic Koala”), there was a known incompatibility between Blender and the Compiz Fusion accelerated (OpenGL) window manager used in Ubuntu. By default, Compiz Fusion is enabled in Ubuntu, causing the problems to manifest themselves in Blender as flickering windows, completely disappearing windows, inconsistent window refreshes, and/or an inability to start Blender in windowed mode.

The fix for this is simple. Install compiz-switch (might be in universe). Go to Applications → Accessories → Compiz-Switch. This will disable compiz temporarily. Do the same to turn compiz back on when you're done using Blender.

This is no longer needed for current releases of Ubuntu.

Mac OS X

[edit | edit source]

You may need to press  Fn  in order to use the  F1  through  F12  keys.

To expand a section in Blender, you would usually press  Ctrl + UpArrow . On a Mac, if “Spaces” is enabled, you may have to use  Ctrl + Alt + UpArrow .

Microsoft Windows

[edit | edit source]

Two Ways to Launch Blender

[edit | edit source]

Blender requires a console for displaying error messages, so if you launch Blender by means of an icon, two windows will appear: the graphical user interface plus a console window. Closing either window will terminate Blender. These windows are indistinguishable in the Windows taskbar in versions of Windows before Windows 7, which leads to confusion. Also, launching this way does not provide any way to pass command-line arguments to Blender.

Launching Blender from a command prompt is extra work, but it overcomes these issues:

  1. Start → Run...
  2. enter cmd
  3. enter cd c:\Program Files\Blender Foundation\Blender
  4. enter blender

Blender version 2.6 onwards doesn't have this problem, and hides the console window by default. You can show it by clicking Window > Toggle system console

Sticky Keys

[edit | edit source]

Pressing  Shift  five times in a row may activate StickyKeys, an accessibility option which alters how the computer recognizes commands. If a StickyKeys dialog box appears, you should  LMB  the "Cancel" button.

If you don't need the accessibility features, you can disable sticky keys:

  1. Start → Control Panel (OR search for "Accessibility Options" on the Start menu/Search)
  2. double-click on Accessibility Options (Ease of Access Center in Windows 10)
  3.  LMB  the Keyboard tab
  4. for each of the options StickyKeys, FilterKeys, and ToggleKeys:
    1. clear the Use … checkbox
    2.  LMB  the Settings button
    3. uncheck the Use Shortcut checkbox in the settings
    4.  LMB  the OK button for the settings
  5.  LMB  the OK button for Accessibility Options/Ease of Access Center.

Multiple Keyboard Layouts

[edit | edit source]

On systems with multiple keyboard layouts, pressing  Shift + Alt  can alter the layout. (For instance, it might change from QWERTY to AZERTY or vice versa.) Because of this issue, Noob to Pro avoids  Shift + Alt  hotkeys.

If you find your keyboard layout altered, press  Shift + Alt  again to change it back.

You can also disable the hotkey:

  1. Start → Control Panel
  2. double-click on Regional and Language Options
  3.  LMB  the Languages tab
  4.  LMB  the Details button
  5.  LMB  the Key Settings button
  6.  LMB  the Change Key Sequence button
  7. uncheck the Switch Keyboard Layout checkbox
  8.  LMB  the OK button

Additional Resources

[edit | edit source]

Blender User Interface

[edit | edit source]


Here's a preview screenshot of Blender's interface, after a new installation.

Blender initial startup display

For those familiar with older versions of Blender, this will look very different. The redesign makes it much easier to find things.

For a detailed rationale explaining the redesign, read this.

Why does Blender use its own windowing system instead of the operating system's?

[edit | edit source]

Blender follows its own user interface conventions. Instead of making use of multiple windows as defined by your particular OS/GUI, it creates its own “windows” within a single OS/GUI window, which is best sized to fill your screen. Many people accustomed to how applications normally work on their platform of choice, get annoyed by Blender’s insistence on being different. However, there is a good reason for it.

The essence of the Blender UI can be summed up in one word: workflow. Blender was originally created by a 3D graphics shop for their own in-house use. Being a key revenue engine for them, they designed it for maximum productivity, speed and smoothness of operation. That means avoiding “bumps” that slow down the user. For example, windows never overlap, so there’s no need to keep reordering them. You don’t have to click in a window to make it active, just move the mouse. There is a minimum of interruption from popups asking for more information before performing some action. Instead, the action is immediately performed with default settings, which you can adjust afterwards and get immediate feedback on the results.

Blender may not be “intuitive” to start learning, in that you cannot simply sit down in front of it and figure out things on your own, especially from a position of knowing nothing at all. But once you have picked up some basic conventions, you will find it starts to make sense and then you will be free to experiment and discover things on your own.

"Save changes on exit" prompt

[edit | edit source]

As of Blender version 2.79, you are prompted on exit when there are unsaved changes. You can change this behaviour in Edit → Preferences → Save & Load → Save Prompt.

Prior to that version, Blender was not asking about unsaved changes. Instead, Blender saved changes, when it closes, to a file called 'quit.blend'. The next time you use Blender, you had to select File → Recover Last Session to resume right where you left off.

Blender Windowing System

[edit | edit source]

The Blender user interface may appear daunting at first, but don't despair. This book explores the interface one step at a time.

In this module, you'll learn about Blender windows:

  • recognizing windows and their headers,
  • the different types of windows,
  • how to activate and resize windows,
  • how to split and join windows.

You'll also practice launching and leaving Blender.

An Interface Divided

[edit | edit source]

Blender's user interface is divided into rectangular areas called windows (or sometimes, areas). The overall arrangement of windows is called a workspace.

If you haven't already launched Blender, go ahead and do so. You should soon see something that resembles the following.

Blender has had some major changes to its user interface (UI) since version 2.4x. Some of these changes include moving buttons and changing the space bar hot key from the “add menu” to the “search menu” ( SHIFT + A  is now the "add menu” hot key). This is important to know when trying to follow tutorials.

Other changes include the addition of the tool bar and window splitting widget. The shelf widget (indicated by a plus sign) opens hidden tool shelves. The object tool shelf can be toggled on and off by pressing  T . The properties tool shelf can be toggled on and off by pressing the  N . The split window widget allows you to split and join windows. Blender 2.69 is shown below.

If you see something substantially different...
  • You may be running a different version of Blender - perhaps a newer version. The screenshot was made using the 2.69 release.
If you're running an older version, you should probably upgrade. Download instructions are in the Introduction.
  • The user-interface settings on your computer may have been changed.
    Try resetting the user interface with File → Load Factory Settings.
To take a video in Blender, press  Alt + F3 , and click Make Screencast. This will record what's on your screen until you click the red Close button on the info header. The screencasts will be saved in the tmp folder. In Microsoft Windows, the tmp folder is located at 'C:\tmp'.

Window Headers

[edit | edit source]

Did you find all five headers?

Every Blender window has a header. A header can appear at the top of the window, at the bottom of the window, or it can be hidden. Let's take a closer look at the headers.


The header of the Info window is outlined in green.

The header of the 3D View window is outlined in red. Note that it runs along the bottom of the 3D View window, not the top.

The header of the Properties window is outlined in blue.

The header of the Outliner window is outlined in white.

The header of the Timeline window is the one on the bottom (not outlined)


If you click with  RMB  on the header, a menu pops up which lets you move the header (to the top if it’s at the bottom, or vice versa), or maximize the window to fill the entire workspace:

To hide the header completely, move the mouse to the edge of the header furthest from the edge of the window (i.e. the top edge of the header if it is at the bottom of the window, or vice versa); it will change into a vertical double-headed arrow. Now click with  LMB  and drag towards the window edge, and the header will disappear. In its place, you will see the following symbol appear at the corner of the window: . Click this with  LMB  to bring the header back.

Window Types

[edit | edit source]

Blender has many types of windows (there are 16 of them in Blender 2.69) and a Console for the Python programming language. You've just encountered the Info, 3D View, Properties, and Outliner windows. The rest will be introduced as needed in later modules.

Every window header in Blender has an icon at the left end to indicate the window type. For instance:

  • = Info
  • = User Preferences
  • = 3D View
  • = Outliner
  • = Properties

If you  LMB  on the icon, a menu will pop up. (If you don't know what  LMB  means, please review the Keystrokes, Buttons, and Menus Notation module.)


By matching the icon in the header to the icons in the menu, you can tell that the window here is a 3D View window.

The menu can be used to alter a window's type. In this screenshot, the user is about to change the window into a Properties window.


Note:

Any window can be changed to any type. Blender doesn't mind if there are multiple windows of the same type.

Note:

The workspace layout is saved along with the document. Anybody subsequently opening the document will see the last-saved layout.

If you've changed any window's type, please change it back (or reload the factory settings with File → Load Factory Settings) before continuing with this tutorial.

The Active Window

[edit | edit source]

The active window is the one that will respond if you press a key. Only one Blender window is active at any given time.

The active window is usually the one containing the mouse pointer. (Blender uses a "focus follows mouse" user interface model. When a hotkey fails to work as expected, it is often because the mouse pointer has strayed into a neighboring window.) To change the active window, simply move the mouse pointer into the window you wish to activate.

Practice changing the active window by moving your mouse between the 3D View and the Timeline windows. The Timeline window is directly below the 3D View header. At this point, it's worth mentioning that the header for the 3D View window and Timeline window is at the BOTTOM of its own window instead of the top as the name "header" implies.

Note:

When a window becomes active, its header gets brighter.

Resizing Windows

[edit | edit source]

Resizing windows is easy.

Dragging on a Border

[edit | edit source]
Step 1
Move the mouse pointer to the border between two windows (the area outlined in red below. The pointer will change to an up/down arrow.
Steps 2-4
Press and hold  LMB .
Drag with the mouse to move the border up and down.
When the border is where you want it, release  LMB .


Whenever you increase the size of one window, you decrease the size of another. That's because Blender has a non-overlapping window interface: unlike many other programs, it does not permit windows to overlap. Neither does it move windows; it just resizes them. If you find that you cannot increase the size of a window (e.g. the Info window) any further although there seems to be enough space to do so, it may be because you decreased the size of another window (e.g., the Outline window) to its minimum size (i.e, just the heading).

Maximizing a Window

[edit | edit source]

Another way to resize a window is to maximize it. When Blender maximizes a window, it makes the window as large as possible. The previous window configuration is saved.

  • To maximize the active window, press  Ctrl + UpArrow  ,  Ctrl + DownArrow  or  Shift + Space . On a Mac, if “Spaces” is enabled, you may have to use  Ctrl + Alt + UpArrow .
  • When a window is maximized, use  Ctrl + UpArrow  ,  Ctrl + DownArrow  or  Shift + Space  to restore the previous (unmaximized) window configuration.


Practice maximizing and un-maximizing the 3D View and Timeline windows.

Note:

If you are running a version of Blender before 2.57, you cannot maximize a User Preferences window.

Shelves

[edit | edit source]

You will notice that the 3D View window (the largest window in the screenshots above) has several buttons down the left side. This rectangular portion is called the Tool Shelf. This is like a window within a window - you can drag the boundary between it and the main part of the 3D View to resize.

If you drag all the way to the window boundary, the shelf will disappear. In its place, the following symbol will appear: . Click it to bring the shelf back.

Too Much To Fit

[edit | edit source]

If a window or shelf contains too much information to fit within its display area, scrollbars will appear along the bottom or right edge. You can scroll the contents by dragging these with  LMB ; alternatively you can drag with  MMB  directly within the contents.

A window header may also contain more than fits within its displayable area. There is no explicit visual clue for this (though some of the widgets at the right edge might not be visible), but if that happens, you can drag sideways within the header with  MMB  to scroll its contents.

Splitting And Joining Windows

[edit | edit source]

At the top right and bottom left of every window, you will see something like this: . If you move the mouse over the icon, you will see the pointer turn into a cross. At that point, you can do one of the following by clicking and dragging with  LMB :

  • Split the window into two copies horizontally by dragging horizontally away from the edge.
  • Split the window into two copies vertically by dragging vertically away from the edge.
  • Join the window to the adjacent one horizontally (getting rid of it and taking over its space) by dragging towards it.
  • Join the window to the adjacent one vertically (getting rid of it and taking over its space) by dragging towards it.

Of course, the last two are only possible if there is in fact another window in that direction. Note: you can only join windows horizontally that are the same height, and windows vertically that are the same width.

The Default Workspace

[edit | edit source]

If you look at the above screenshot of the default workspace, you will see the following window types:

  • The menu bar at the top (outlined in green) is actually a window, called Info . In previous versions of Blender, you could resize this to reveal the User Preferences, but in 2.5x they have been moved to their own window type. Instead, all you can see here if you enlarge the window are some debug messages, which may be removed in a future version of Blender. As of 2.70, the debug messages are still present in this menu.
  • The largest window on the screen is the 3D View . This is where you work on your model.
  • The Properties window is the tall area on the right; this is where most of the functions are located for performing operations on models, materials etc. In previous versions of Blender this was called the Buttons window. Over time, it evolved into a disorganized area that made it difficult to find things. It has been cleaned up significantly in 2.5x. Note that it defaults to a vertical layout, rather than the horizontal one of previous versions. The new design prefers a vertical layout, which better suits today’s widescreen monitors.
  • The Outliner (at the top right) gives you an overview of the objects in your document. As your models get more complex, you will start to appreciate the ability to quickly find things here.
  • The Timeline (across the bottom) becomes important when you’re doing animation.

The default layout may not be optimal. For example, if you’re doing a static model or scene, not an animation, you can get rid of the Timeline. If you’re doing heavy script development, you’ll probably want the Console available to try things out. And so on.

Workspace Presets

[edit | edit source]

In the Info window/titlebar, you will see a menu with an icon like this . Clicking on it with  LMB  will show the following menu:

Selecting from this menu lets you quickly switch between various predefined workspace layouts, tailored to various workflows. Try it and see. You can return to the default layout by selecting “Default” (but note that any changes you make to the layout are immediately associated with the name being displayed here). The menu has a search box at the bottom. Typing text here will restrict the menu to showing items containing only that text. It might not appear to have much use, but in a complicated project that needs dozens of different layouts, the search function could become very useful indeed!

The name of the currently selected item appears to the right of the menu icon. In the illustration above, this is "Default". Blender allows you to rename the current menu item by clicking on it with the  LMB  and typing a new name, so take care not to do so unless you actually want to rename the menu item. For example, if you replace the name "Default" with "MyDefaults", you will subsequently see that "MyDefaults" appears in the list of menu items.

Note also the “+” and “X” icons to the right of the menu; clicking “+” creates a new entry which is a duplicate of the last-selected entry, while clicking “X” gets rid of the currently-selected entry. You will see these conventions appear consistently in menus elsewhere in Blender’s new, revamped interface.

One Document At A Time

[edit | edit source]

Blender can only work with one open document at a time (this does not apply to blender 2.79, which allows multiple instances of blender to run concurrently). To save changes to the current document, select one of the Save options from the File menu (or press  Ctrl + S  to save under the last-saved name). To open a new document (actually load a copy of your last-saved user preferences), select “New” from the File menu (or press  Ctrl + N ), and select “Reload Start-Up File” from the popup that appears, but be aware this will not automatically save any changes to the previous document.

Scenes

[edit | edit source]

A scene is like a separate Blender-document within-a-document. Different scenes within the same document can easily share objects, materials etc. You can define them once and make different renderings and animations from them. You create, delete and switch scenes using the scene menu in the info header. A new document starts by default with just one scene, called “Scene”.

Leaving Blender

[edit | edit source]

To exit Blender:

  1. If there's a tool active, press  Esc  to exit the tool.
  2. Press  Ctrl + Q . This brings up an OK? menu.
  3. Confirm Quit Blender by clicking  LMB  or pressing  Enter .
Note:

In versions before 2.79, Blender will not prompt you to save your work. However, you can easily pick up where you left off by using File → Recover Last Session.

Additional Resources

[edit | edit source]

User Preferences Windows

[edit | edit source]
A screenshot of the Blender Preferences window in Blender 2.80

In this module, we'll take a closer look at the Blender Preferences window.

Accessing Blender Preferences

[edit | edit source]

To open the Blender Preferences window click Edit → Preferences...

In Blender 2.79, you will find it under File → User Preferences...

Configuring Your Preferences

[edit | edit source]

In order to get to modeling and rendering sooner, this tutorial will cover only a few of the many user-settable preferences.

If you ever need to restore Blender to its factory settings, click File → Defaults → Load Factory Settings

Save & Load → Auto Save

[edit | edit source]

As the name suggests, Auto Save automatically saves the current .blend after a specified period of time. You can turn this on and off using the checkbox labelled "Auto Save". You can also adjust the amount of time between each save, by adjusting the "Timer (Minutes)" field.

System → Undo Steps

[edit | edit source]

By default, Blender remembers your last 32 actions and allows you to undo them one at a time by either pressing  Ctrl + Z  or by selecting a frame under Edit → Undo History. However, you can change the number of Undo Steps stored to remember more or less actions, in case you want to conserve memory or simply stay on the safe side. You can also use the Undo Memory Limit slider to specify the amount of RAM (in megabytes) used for storing the undo levels. In case you're not too worried about memory, you can set the Undo Memory Limit field to 0 to remove the memory limit.

Input → Numpad Emulation

[edit | edit source]

Blender uses numberpad keys (such as  NUM7 ) to control the 3D View and ordinary numeral keys (such as  7 ) to change layers. If you are working on a laptop or if you find the numberpad inconvenient, you can select Emulate Numpad to reassign the 3D View controls to the ordinary numeral keys.

Input → Emulate 3 Button Mouse

[edit | edit source]

Blender makes significant use of all three buttons on a standard computer mouse. If you do not have a mouse with three buttons, enabling this setting will let you perform  MMB -related actions with  ALT + LMB 

Keymap

[edit | edit source]

In Blender 2.79 and earlier, Blender used right click for selection. However, in Blender 2.8, this was changed to left click on default, along with some changes to keyboard shortcuts for efficiency. To stay compatible with different users' preferences, three keymap presets are provided on installation: "Blender", the new default keymap, "Blender 27x", which includes very few changes compared to earlier versions, and "Industry Compatible", designed to be used by those coming from other 3D software, such as Maya and ZBrush

Since much of this book was written before the 2.8 update came out, you may find pages that still use the old "right click to select" option, along with some outdated keybinds. If you're following a lot of tutorials for Blender 2.79 or earlier, you can go into Keymap and select Blender 27x under the presets list. You can always switch back if needed.

Additional Resources

[edit | edit source]


Buttons Windows

[edit | edit source]

The properties window lets you change many settings and properties relating to the current scene and selected objects. You can edit many options, including customizing materials and textures, controlling how your scene is rendered and at what quality, among many other things.

The properties window is divided into categories, which themselves group individual tabs. Each tab, in turn, groups a selection of properties and settings. For example, the World Properties tab, under the Scene category, lets you control the color and texture of the background of the scene (i.e. the sky), and allows you to add volumetric effects to the scene (i.e. fog or mist). Each tab has their own, unique, icon. Some tabs will even change depending on the type of object selected!

Active Tool and Workspace settings

[edit | edit source]

Active Tool and Workspace settings

[edit | edit source]

As the name suggests, this simply configures the active tool (for example, the move tool) and various workspace settings (such as switching to object mode when a workspace is opened).

Scene

[edit | edit source]

Render Properties

[edit | edit source]

This tab lists settings that control the how the resulting render of a scene is displayed, such as performance-related settings, color management settings, and effects like motion blur. These settings will change depending on the render engine used, which can also be edited from this tab

Output Properties

[edit | edit source]

This tab controls various settings that determing the output of a render. This includes resolution, frame rate, file format, among other

Scene Properties

[edit | edit source]

This tab lets you choose which camera to use for rendering, change the units and edit the gravity settings for the current scene.

You can also select another scene to be a “background” for this scene. That is, all renders of this (foreground) scene will also include the contents of the background scene, as though they had been copied into this scene. While the background appears in the 3D viewport when editing this scene, none of its contents are editable, or even selectable; that has to be done in the background scene itself.

World Properties

[edit | edit source]

This lets you change the environment of the scene. In this tab, you can edit the background color and texture (i.e. the sky color), and add volumetric effects such as fog or mist.

Collection

[edit | edit source]

Collection Properties

[edit | edit source]

This tab lets you control various collection settings, such as whether its contents are selectable, or whether it can be seen in render.

Object

[edit | edit source]

Object Properties

[edit | edit source]

This tab lets you control general object properties, such as transformations (i.e. location, rotation, scale), parent-children obejct relationships, collections, and other. Note that even if you have multiple objects selected, these properties only control the active object, which is usually the last object selected.

Modifier Properties

[edit | edit source]

This tab lets you add, edit, and remove modifiers. Object modifiers are operations that affect your object in a non-destructive way (i.e. it can always be reversed later). For example, adding the bevel modifier to a cube applies a bevel to the geometry of the cube, but you can adjust the bevel or remove the bevel whenever you like. Some object types, such as lights and cameras, can't have modifiers.

Visual Effects Properties

[edit | edit source]

This tab lets you add visual effects to grease pencil objects, such as pixelation and blur effects. These effects treat the object like an image. Unlike modifiers, these can not be applied to the object.

Particle Properties

[edit | edit source]

This tab lets you add particle systems to objects, which can let you create effects such as smoke, flames or sparks. Particles in Blender can also be used to generate hair or fur. Particles can be set to custom objects, to produce effects like blades of grass, water droplets on a wet surface, or even entire buildings to make up a large cityscape!

Physics Properties

[edit | edit source]

This allows you to simulate real-world physics, such as simulating solid dice colliding with each other, or simulating how water in a cup reacts when you move it.

Object Constraint Properties

[edit | edit source]

Constraints limit various object properties, such as the location, rotation, and scale of the object. These are usually to set animate objects, such as making the wheels of the bus rotate together.

Object Data

[edit | edit source]

Object Data Properties

[edit | edit source]

These control settings specific to the object type such as text font, lamp settings, and camera settings. This is reflected in the icon, which changes according to the type of object selected.

Object Shading

[edit | edit source]

Material Properties

[edit | edit source]

The material settings for an object control its appearance, e.g. its colour, whether it has a shiny or dull surface, how transparent it is, and so on.

You can also control the material of an object using shader nodes.

Texture Properties

[edit | edit source]

Textures in Blender used to control the surface of an object, alongside the materials. Nowadays, it has been replaced by the shader nodes, and is only used for texture painting.

3D View Windows

[edit | edit source]

3D View windows are used to visualize 3D scenes. You’ll do a lot of work in these windows, so you will need to learn your way around.

Note:

The 3D view only shows an approximation of the final appearance of the scene. The overall geometry should be correct, but don’t expect accurate rendition of materials, textures, lighting etc, since that can be very time consuming. The 3D view is designed to respond to your actions at interactive speeds. There are additional view options (wireframe, hiding etc) that make it easier to see which parts of the model you’re working on, have no effect on the final render. You can change your viewpoint at any time (which will be essential while working on your model/scene), while the viewpoint of the render is controlled by the camera position.

In this module, you'll learn:

  • to recognize 10 things commonly seen in viewports
  • to tell which mode Blender is in
  • how to change viewport options and viewpoints
  • how to position the 3D cursor

You'll also learn the fundamentals of:

  • visibility layers

The Viewport and its Contents

[edit | edit source]

Aside from its header, the remainder of a 3D View window is its viewport. You use viewports any time you need an up-to-date view of the scene you're working on.

Viewports are busy places. Go on a scavenger hunt and see what you can find in a simple viewport.

  1. Launch Blender.
  2. Just so we're all looking at the same scene, load the factory settings using File → Defaults -> Load Factory Settings.
  3. Confirm the “Load Factory Settings” popup with  LMB  (or  Enter ).
  4. If the NumLock indicator on your keyboard is unlit, press  NumLock  so that numpad hotkeys will work properly.

(If you're unsure what  LMB  means, please review the Keystroke, Button, and Menu Notation module.)

You should see something like this:


Here the viewport has been outlined in red to focus your attention on it.


A Virtual Scavenger Hunt

[edit | edit source]

Look at the default scene and find the following eight items:

In the Center

1. a solid gray cube with orange edges.

  • This is the default cube, your first Blender object!

2. Three arrows, one red, one green and one blue, their tails joined to a white circle

  • This is not an object (part of your model/scene), but part of Blender’s user interface for manipulating objects. It is the manipulator, also known as the 3D transform widget.
  • The arrows represent the directions of the X, Y and Z axes of the currently chosen transform orientation coordinate system. Initially this is the global coordinate system.
  • The circle represents the center of the selected object (the cube).
  • If you don't know what the "global coordinate system" is, please review the module on Coordinate Spaces in Blender.
If you don't see the manipulator...
  • It's possible that a tool is active. Press  Esc  to cancel any tool action.
  • Another possibility is that the manipulator has been disabled:
    • Toggle it on or off with  Ctrl + Space .

3. A red-and-white striped circle with black cross-hairs

  • This is not an object. It is the 3D Cursor, which indicates where newly-created objects will appear in the scene.
  • The cursor is similar to the insertion point in a text editor, which indicates where new text will be inserted in a document.
In the Lower Left Corner

4.

  • This is not an object. It is the mini axis, and its orientation matches that of the global coordinate system, with the usual conventions: red for X, green for Y and blue for Z. Think of it as a little compass, reminding you which way is left/right, front/back and up/down.

5. The notation "(1) Cube"

This is not an object. It is object info, indicating that:
  • You're viewing the first frame of an animation.
and
  • The current or most recently selected object is named "Cube".
In the Upper Left Corner

6. The notation “User Persp”

This is not an object. This tells you which mode the viewport is in. The first word will change if you select one of the perfect views or the camera view (see below), otherwise it just says “User”, and the second word is “Persp” or “Ortho” to indicate whether this is a perspective or orthographic view.
To the Right of Center

7. A black round thing that resembles a sun symbol

This represents a lamp, a light source for the scene. (It is an object.)

8. A pyramidal wireframe item

This represents a camera, a viewpoint that can be used for rendering. (It too, is an object.) The camera is looking at the base of the pyramid. The solid triangle attached to one side of the base is to remind you which way is up in the image that the camera takes.
On a small display, the camera might initially lie outside of the viewport and thus be invisible. In that case,  SCROLL  to zoom out until it becomes visible.
Throughout

9. A dark gray background, divided into squares by lighter lines. This is the grid floor, which you can (but don’t have to) use as a ground plane for positioning your models.

Each grid square is one blender unit (or BU) on a side. A BU can be whatever you wish, e.g. an inch, a centimeter, a mile, or a cubit. Blender lets you choose your scene scale in the Scene tab of the Properties Panel.

10. Three mutually perpendicular coloured lines associated with the grid floor: the red and green ones lying horizontally in the floor and the blue one running vertically. These are the global coordinate axes for orienting your scene. Red is the X-axis, green the Y-axis, and blue the Z-axis.

  • In Blender 2.67a, you can't see the blue line for Z-axis here, but you can see it in Front or Side view.

Modes

[edit | edit source]

Blender has many modes, i.e. settings that affect its behavior, and this is especially true of the 3D View window.

Sometimes it's not obvious which mode is active. This leads to mode errors where Blender will do something you didn't expect because you thought it was in one mode and it was actually in another.

The function performed by a hotkey or mouse button can depend on:

  • what mode the user interface is in,
  • whether the keyboard is in NumLock mode,
  • which window is active,
  • the mode the active window is in,
  • which item or items are selected,
  • whether you've initiated a hotkey sequence.

It helps to recognize the common modes and how to get out of them.

Object Mode vs. Edit Mode

[edit | edit source]

The 3D View windows are normally in Object Mode. In this mode:

    • The mouse pointer is the default arrow normally used on other programs.
    •  RMB  is used to select objects in the scene.
    • In versions 2.8 and above Use  LMB  to select objects in the scene

If there are objects in the scene, you can get into five other modes:

  • Edit Mode: used to edit the shapes of objects
    • The mouse pointer is a thin inverse-video cross.
    •  RMB  is used to select vertices, faces or edges of the current object.
    • Press  Tab  to enter/exit this mode.
  • Sculpt Mode/Vertex Paint/Texture Paint/Weight Paint
    • The mouse pointer is now a thin, orange (white in Texture Paint) circle.

These modes are also indicated by a menu in the 3D View header. You can use this menu to change modes.

These modes are a setting shared by all 3D View windows. In other words, when you change the mode in one window, any other 3D View windows change mode also.

Viewport Options

[edit | edit source]
Note:

The options in this section only affect 3D View viewports. They do not affect renders.

Solid vs. Wireframe

[edit | edit source]

By default, the 3D View window draws objects using the Solid drawtype, in which surfaces are opaque. To toggle between Solid and Wireframe drawtype (edges only, no faces) for a particular viewport:

  1. Activate the 3D View window
  1. Press  Z .

Alternatively, you can choose these and other drawtypes from the "Viewport shading" menu in the 3D View window header.

Orthographic vs. Perspective

[edit | edit source]

By default, viewports draw orthographic views. To toggle a viewport between orthographic and perspective views:

  1. Activate the 3D View window.
  2. Press  Num5 .

(If you're unsure what the difference is, please review the "Orthographic Views" module and the "Perspective Views" module.)

Note this perspective versus orthographic setting for the 3D viewport is completely separate from the similar setting in the camera properties. The former takes effect while you’re working on the model, the latter when you render.

So why have a separate setting for the 3D view? Because certain aspects of modelling are easier in one view than another. If the final render will be using perspective, then showing perspective in the 3D view naturally gives you a better idea of how the final render will look. But perspective foreshortening can sometimes make it hard to ensure the model has the proper shape, which is why there is the option to switch to orthographic view.

If you have trouble distinguishing between orthographic view and perspective view

... you should activate the View Name option. This is enabled by default and causes the name of the current view ("User Persp", for instance) to appear in the upper left corner of every viewport. If there is no text, then you can enable it by:

  1. Accessing the User Preferences window.
  2. Click on the Interface tab.
  3. Enable View Name.

Changing Your Viewpoint, Part One

[edit | edit source]

Each viewport has a viewpoint, which takes into account:

  • the location of the viewer in the 3D scene (There doesn't need to be an object at that location.)
  • the direction the viewer is looking
  • the magnification (or zoom factor) used

Changing your viewpoint allows you to navigate your way through a 3D scene.

We'll start with three very basic techniques:

  • Zooming
  • Orbiting/View Rotation
  • Perfect Views.

Additional techniques will be covered later in this module.

Zooming

[edit | edit source]

Blender offers several ways to zoom in and out:

  • Use  SCROLL 
  • Click and drag vertically with  Ctrl + MMB .
  • Use  Num+  and  NUM−  to zoom in and out in small increments.

Note the following limitations of Blender's zoom feature:

  • If the viewport is in orthographic mode, Blender zooms as if looking through a telescope. You can increase the magnification, but the viewpoint's location doesn't change. For this reason, you cannot zoom into or through objects in orthographic mode.
  • If the viewport is in perspective mode, Blender zooms to the center of the viewport. The viewpoint can pass through objects, but can't pass beyond this point, no matter what you do. Zooming only gets slower and slower and slower. If the center of the viewport is somewhere you don't expect, zooming may appear to be broken.

Orbiting and View Rotation

[edit | edit source]

Let's fly around the default cube, viewing it from different angles. In this way you'll see that it really is a cube, centered on the origin, half above the X-Y plane and half below it.

  1. Activate the 3D View window by placing the mouse pointer inside it.
  2. Now you can:
    • Click and drag with  MMB  to orbit freely around the center of the view.
    • Use  Shift + Alt + SCROLL  to rotate the viewpoint vertically around the center of the view.
    • Use  Num2  and  Num8  to rotate the viewpoint vertically around the center of the view in 15-degree increments.
    • Use  Ctrl + Alt + SCROLL  to rotate the viewpoint around the Z axis.
    • Use  Num4  and  Num6  to rotate the viewpoint around the Z axis in 15-degree increments.

If this is all very confusing for you, don't worry! You'll learn as you get more experience.

When you are finished flying around the cube, you can restore the original view by reloading the factory settings with File → Load Factory Settings.

If the hotkeys don't work...

You may have pressed number keys above the letters instead of the ones on the numpad. If you do, the default cube will vanish. This is because the scene consists of multiple layers. The default cube is in layer 1, and you've told Blender to switch to the layer of the number you just pressed. The selected object (the cube in this case) remains in layer 1, which is no longer visible. For instance,  2Key  tells Blender to switch to layer 2. To switch to layer 1 again, press  1Key . You can view the different layers by clicking on the little squares on the layer map:

User comments
The Shift + Alt + Scroll and Ctrl + Alt + Scroll do not work for me with factory settings in Blender 2.92.0 (Doesnt Work Counter: 2.People)
Note:
The center of the viewport is not marked, i.e. it's difficult to tell where it is.  This can cause unexpected behavior during rotation.

Perfect Views

[edit | edit source]

It's often useful to get a perfect view of a scene, i.e. to view it along one of the main axes, with the other two main axes oriented up-down and left-right.

Perfect View Hotkeys
Hotkey View Axis Pointing Right Axis Pointing Up
 Num7  "top" +X +Y
 Ctrl + Num7  "bottom" +X -Y
 Num1  "front" +X +Z
 Ctrl + Num1  "rear" -X +Z
 Num3  "right side" +Y +Z
 Ctrl + Num3  "left side" -Y +Z

The following screenshot shows all three perfect views plus camera perspective for the Suzanne primitive:

This layout is used so often, it has a keyboard shortcut: ( CTRL + ALT + Q ).

Positioning the 3D Cursor

[edit | edit source]

Positioning the 3D cursor is a very basic operation, yet one that many beginners find challenging. It touches on an issue common to all 3D graphics software: "How do you specify points in a 3D scene when we can only see two dimensions at a time?"

Basic Technique

[edit | edit source]
  1. Go into either Object Mode or Edit Mode.
  2. Move the mouse pointer to the desired position (in any viewport).
  3. Click  SHIFT + RMB .

Two Challenges

[edit | edit source]

Challenge #1. Using only tools presented thus far, try positioning the 3D cursor on the virtual camera.

Try it!

When you're done, check your work by orbiting the camera.

Perhaps you thought you were done when you clicked on the camera. But the moment you changed your viewpoint, you probably found that the 3D cursor was actually behind (or in front of) the camera.

Hints:

  • Try positioning the cursor in two different perfect views.
  • Use orthographic, not perspective, view.

Challenge #2. Using only tools presented thus far, try repositioning the 3D cursor at the origin (that is, at the center of the cube).

As before, check your work by orbiting the cube. Don't spend too much time on this.

User Comments

"I found that I would select the cube when left clicking on it in object mode, if the "Use 3d transform manipulator" button was enabled. To toggle this off, you click on the gray pointing hand in the 3d panel header, or (Ctrl Space)."

"When you want the cursor back into the cube, just select the camera with RMB, put the cursor into the cube following the steps above, and re-select the cube with RMB."

"I've discovered it helps a lot if you are in Object Mode and not in Edit Mode. I wrote the following before discovering this: The problem with this exercise, for me, is that left clicking on the cube selects the cube instead of moving the 3d cursor. If I click on the cube outside of its central white circle I can get the cursor to move there, but only to outside of this white circle, and even then this only works sometimes."

"I failed at this until I had zoomed in close enough to the cube. When I was too far zoomed out I kept selecting the cube rather than creating an edit point."

"I had the same problem and found it was because the cube was selected. I made sure I was in object mode, right clicked on the camera to select the camera instead of the cube, and I could then position the edit point in the cube. However, doing this messed up the next part of the tutorial because you cannot switch into edit mode with the camera selected! Perhaps the suggestion of trying to put the 3D cursor in the cube should be dropped as it raises too many questions at this stage."

"You can deselect all by pressing the AKEY or the select button in the 3D View."

"Use wireframe mode works better to get the cursor in."

"To get it back in the cube: 1) Make sure you're in object mode. 2) Select the cube. 3) Object > Snap > Cursor to selection (cursor refers to the 3D cursor here) so it puts it right in the middle of the cube."

"I think it's an essential point to note that in order to place the cursor inside the cube, the cube must NOT be selected. AKEY was probably the best way to deselect the object."

"If I remember correctly, undo history gets cleared when you switch between object and edit mode."

"I wasted a lot of time here. Thank you to the reader who suggested (on the 3D view header) Object > Snap > Cursor to selection. It was the only thing that worked to get the cursor visible again and placed where clicked."

"I missed the point of the exercise first time around. You can't set a 3D point on a 2D screen without technique. Orthographic views are crucial. I am just learning, but take that, at least, away from it."

"Positioning the 3D cursor in othographic views always made it snap to the cube surface, making it impossible to center precisely. Fix this by disabling "Cursor Depth" on the "interface" tab under "User Preferences".

"The phrase check your work by orbiting the camera needs additional clarification, such as a referenced section or the precise commands to use."

More Ways to Position the Cursor

[edit | edit source]

Here's an easy way to position the cursor at the center of an object:

  1. Make sure Blender is in Object Mode, with the object selected.
  2. Move the mouse pointer to any 3D View window.
  3. Snap the cursor to the selected object using either:
    •  Shift + S Cursor to Selected
    or
    • Object → Snap → Cursor to Selected

Here's 2 easy ways to relocate the cursor to the scene's origin (0, 0, 0):

  1. Move the mouse pointer to any 3D View window.
  2. Press  Shift + C  to reset the cursor to the origin.
    • Note that this also changes the view location, meaning that when you zoom in, you won't zoom in to the scene origin.
  3. A better way is to click Object → Snap → Cursor to Center
    • You can also do this by  Shift + S Cursor to Center.

Changing Your Viewpoint, Part Two

[edit | edit source]

Now you'll learn some additional techniques for obtaining the view you want:

  • Panning
  • Centering
  • Jumping to the camera's viewpoint
  • Zooming in on a selected area

Panning

[edit | edit source]

When you orbited the cube, the viewpoint's position and direction both changed at the same time. You also can shift the viewpoint up-down or left-right without changing its direction. (This is similar to the side-scrolling effect in the classic Mario and Sonic video games.)

This is called panning, and it's an important skill to master. Try it now:

  1. Activate a 3D View window by placing the mouse pointer inside it.
  2. Now you can:
    • Use  Shift + SCROLL  to pan up and down.
    • Use  Ctrl + Num2  and  Ctrl + Num8  to pan up and down in small increments.
    • Use  Ctrl + SCROLL  to pan left and right.
    • Use  Ctrl + Num4  and  Ctrl + Num6  to pan left and right in small increments.
    • Click and drag with  Shift + MMB  or  Shift + Alt + LMB  to pan freely in the viewplane.


You will likely find this to be a distraction in some cases. To move the viewpoint position back to the center, snap the cursor to the center, then click View → Align View → Center View to Cursor. You could also snap the cursor to the center then press  Ctrl + Num. .

In versions ≥2.74 you can also use  Alt + Home  to center the view to the cursor.

Centering

[edit | edit source]

When you zoom or rotate the view, you always zoom or rotate around the center of the view.

To make sure everything in your scene is visible:

  1. Press  Home .

To center the view on an arbitrary point:

  1. Move the 3D cursor to the point of interest.
  2. Verify the cursor position from a second viewpoint.
  3. Press  Alt + Home  to center the view.

To center the view on an object in the scene:

  1. Make sure Blender is in Object Mode.
  2. Zoom out until the object is in the viewport.
  3. If any objects are selected, use  A  (or Select → Select/Deselect All) to deselect them.
  4. Select the object of interest by clicking  RMB  on it.
  5. Press  Num.  to center the view.

Jumping to the Camera's Viewpoint

[edit | edit source]

To see the scene as the virtual camera sees it, press  Num0 . Afterwards, you can rotate, pan, and zoom normally, but the virtual camera will not follow. To go back to your previous view, press  Num0  again. (In the latest versions of Blender, the virtual camera can be made to follow all the changes made in viewpoint while in camera view by checking the option "Lock Camera to View" on the Transform panel. Hit  N  on your keyboard to bring up the transform panel. To disable this option uncheck "Lock Camera to View.")

Zooming into a Selected Area

[edit | edit source]

Suppose you want to get an extreme closeup of a particular area. Because there's no center mark on the viewport, you might have to pan and zoom several times to get the desired view.

The shortcut for zooming to an area is:

  1. Activate a 3D view window that contains the area of interest.
  2. Press  Shift + B . A crosshair appears in the viewport.
  3. Click and drag with  LMB  to draw a rectangle around the area of interest.
  4. When you release  LMB , the viewport will zoom in on the area you selected.

View Navigation

[edit | edit source]

You can also change your viewpoint in the 3D view by “walking” or “flying” through it. To activate this, press  SHIFT + F . By default in Blender 2.70, this puts you in “walk” mode. Earlier versions only offered “fly” mode. (In Blender 2.70 and later, you can choose which one you prefer in User Preferences, under the Input tab.)

In both modes, helpful prompts appear in the header of the 3D view window to remind you of the key functions while the mode is in effect. When you have reached the position and orientation you want, press  LMB  or  ENTER  or  SPACE  to end the navigation mode and stay there, or  RMB  or  ESC  to abandon the navigation mode and be teleported immediately back to your original position and orientation. (In 2.77+, pressing  SPACE  will teleport you to where the cross hairs point towards.)

Walk Mode

[edit | edit source]

In this mode, you move the mouse to turn your view up/down/left/right, and  W ,  A ,  S  and  D  or the corresponding arrow keys to move forward, left, back or right, and  E  and  Q  to move up or down respectively. Hold a movement key down to keep moving. Movement stops as soon as you release it. Pressing  MMB  will “teleport” you close to whatever objects lie within the crosshairs at the centre of the view.

You can also use  TAB  to turn on gravity. Make sure there is a floor or other object under you to land on! With gravity on, you can no longer use the vertical movement keys, but you can use  V  to make jumps. Press  TAB  again to turn gravity off.

Fly Mode

[edit | edit source]

In this older mode, moving the mouse to change the view works the same as in Walk mode, but the above direction keys ( W ,  A ,  S ,  D ,  E ,  Q  and the arrows) apply “thrust” in the respective directions, so you keep moving after releasing the key. Press the key repeatedly to increase your speed in that direction, or press the key for the opposite thrust direction to reduce your speed. You can roll the mouse wheel up to apply forward thrust, or roll it down to apply backward thrust.

Your current velocity vector automatically changes direction with you when you turn. Thus, you can apply a single burst of sideways thrust while facing an object, then, without applying any additional thrust, keep turning to face the object, and you will go right around it.

Visibility Layers

[edit | edit source]

Every object in the scene is assigned to one or more of 20 visibility layers.

Visibility layers have many uses:

  • You can put scenery, characters, particles, and lamps in different layers, to help organize your scene.
  • By changing which layers are visible, you can simplify your view of the scene and work with only one or two layers at a time.
  • When rendering, only visible layers are included. You can use this to render your scene layer by layer, checking each layer separately.
  • You can configure lamps to illuminate only objects in the same layer.
Left: Viewing layer 1 only.
Right: Viewing all 20 layers.

In Object Mode, you can tell which layers are visible by looking at the twenty small boxes located in the 3D View header between the Transform Orientation menu and the "Lock" button. The top row of boxes represents layers 1 through 10, with 1 being the leftmost and 10 being the rightmost. Similarly, the bottom row of boxes represents layers 11 through 20.

Hotkeys

[edit | edit source]
  • To view just one of layers 1 - 9, press  1KEY  ..  9KEY .
  • To view just layer 10, press  0Key .
  • To view just one of layers 11 - 19, press  ALT + 1KEY  ..  ALT + 9KEY 
  • To view just layer 20, press  ALT + 0KEY .
  • To toggle the visibility of one of layers 1 - 9 without affecting the visibility of the other layers, press  SHIFT + 1KEY  ..  SHIFT + 9KEY .
  • To toggle the visibility of layer 10 without affecting the visibility of the other layers, press  SHIFT + 0KEY .
  • To toggle the visibility of one of layers 11 .. 19 without affecting the visibility of the other layers, press  ALT + SHIFT + 1KEY  ..  ALT + SHIFT + 9KEY .
  • To toggle the visibility of layer 20 without affecting the visibility of the other layers, press  ALT + SHIFT + 0KEY .
  • To make all layers visible at once, press  ~ . Press  ~  again to return to your previous layer visibility setting.
Note:

The hotkeys in this section will not work if you've enabled numpad emulation in the User Preferences window. See the "User Preferences Windows" module for more details.

Note to AZERTY users:

On the AZERTY keyboard layout, the standard number keys are the &é"'(-è_çà keys. Do not use  Shift  unless you want to toggle visibility as explained below.


Holding down  Shift  while selecting a layer (by keyboard or mouse) will, instead of making only that layer visible, toggle the visibility. In this way, you can select combinations or to hide particular layers.

The key to press to select all layers at once differs by keyboard layout. It is:

  •  ¬'  (the key under Esc) on UK keyboards,
  •  `~  US,
  •  ö  German, Swedish, Finnish and Hungarian,
  •  ¨  Swiss German,
  •  æ  Danish,
  •  ù  AZERTY,
  •  ø  Norwegian,
  •  Ñ  Spanish,
  •  ç  Portuguese,
  •  "  Brazilian Portuguese,
  •  ò  Italian, and
  •  ё  Russian.

After pressing the aforementioned key, holding down  Shift  while pressing it again will restore the visibility settings you had before you made all layers visible.

When only one layer is selected, new objects are automatically assigned to that layer. When two or more layers are visible, new objects are assigned to the most recently visible layer.

Count Your Polys

[edit | edit source]

If you want to count the polygons in your scene, the data is available in the Info Header.



As you can see in the above image, this scene has 507 vertices and 500 faces (polygons).

What is a Mesh?

[edit | edit source]

The most fundamental step in the 3D development process is modeling, which entails creating 3D models of objects.

Blender supports many modeling techniques. "Mesh modeling" is the most basic and common modeling technique.

In this module, you'll learn the parts of a mesh, and you'll construct 2D meshes on paper and using Blender. You'll also learn how to create, select, and grab vertices in Vertex select mode.

Definitions

[edit | edit source]

A mesh is a collection of vertices, edges, and faces that describe the shape of a 3D object:

  • A vertex is a single point. (The plural of vertex is "vertices")
  • An edge is a straight line segment connecting two vertices.
  • A face is a flat surface enclosed by edges. (Some other applications call these "polygons")

An Exercise

[edit | edit source]

To give you a feel for how the components of a mesh fit together, you'll now draw a 2D mesh on paper.

Your sketch might look like this.
  1. Get a piece of paper and a pen or pencil.
  2. Draw three dots that are a couple centimeters (about an inch) apart from each other.
    • Each dot represents a vertex in the mesh.
  3. Connect two of the dots with a line segment.
    • The line segment represents an edge in the mesh.
  4. Draw two more edges so that all three vertices are connected.
  5. You've drawn a triangle; fill it in.
    • The area you filled in is a face.
  6. Now draw a fourth vertex (dot) on the paper.
  7. Connect the new vertex to two of the vertices you've drawn previously.
  8. You now have another triangle; fill it in to create the second face.

Could you imagine creating a mesh of faces in 3D space? That's what mesh modeling boils down to.

You can keep filling up the paper with more vertices, edges, and faces if you want. You may want to try and create something interesting (like a letter of the alphabet) with your triangles.

More about Meshes

[edit | edit source]
A character from the "Yo Frankie!" 3D video game in Edit Mode, showing edges and faces.
The model is "(c) copyright Blender Foundation: apricot.blender.org".

Early versions of Blender supported faces only with three edges (triangles) or four edges (called quads). However, faces with five or more edges (so-called N-gons) are supported in Blender starting from version 2.63. Before Blender 2.63, for creating a new face you'd had to select 3 or 4 verts in order and then create the face, repeating the process for every new polygon needed. Version 2.63 and following versions with BMesh, you can create N-gons, regardless the number of verts.[1]

Examine a 3D video game or CGI character for a while. Believe it or not, it is made up of little faces joined together. With modern technology, of course, there can be a lot of faces, so they may be tiny and hard-to-see. Surfaces that appear curved are composed of very many individual flat faces.

When you edit objects in Blender, you'll see every vertex and edge. However, vertices and edges are never rendered; only faces are rendered. The purpose of vertices is to provide 3D control points for faces.

Another Exercise

[edit | edit source]

While it's possible to construct 3D meshes vertex-by-vertex, this is rarely done. However, doing it once the hard way will help you appreciate the powerful modeling tools built in by Blender. Along the way, you'll learn about Edit Mode and the grab tool, both of which you'll need in the next module.

First, summon the default cube:

  1. Launch Blender.
  2. If the NumLock indicator on your keyboard is unlit, press  NumLock  so that numpad hotkeys will work properly.
  3. Load the factory settings using File → Load Factory Settings.

(If you're unsure what  LMB  means, please review the "Keystroke, Button, and Menu Notation" module.)

Because you loaded the factory defaults, the 3D manipulator will be enabled. For mesh editing, it helps to turn the manipulator off:

  1. Make sure the 3D View window is active.
  2. Press  Ctrl + Space  to toggle the manipulator on or off. You also could turn it on/off with the manipulator button on the 3D View header.
In Object Mode, the cube will look like this.

Because you just loaded the factory defaults, Blender should be in Object Mode with the default cube selected.

In order to modify the cube's mesh, you must put Blender into Edit Mode. (Edit Mode is a special mode for making changes to a single object.)

  1. Press  Tab  once to go into Edit Mode on the cube.
In Edit Mode, the cube will look like this.
Edit Mode indicator in the 3D View header.
Note:

 Tab  puts Blender into Edit Mode only if it's in a different mode to start with. If it's already in Edit Mode,  Tab  returns it to whatever mode it was in previously. So pressing  Tab  a second time would put Blender back into Object Mode.

Select mode buttons in a 3D View header, showing Vertex select mode active.

Edit Mode has three (sub-)modes for selecting vertices, edges, and faces. Because you just loaded the factory defaults, you should be in Vertex select mode. In Vertex select mode, vertices show up as yellow, black, or white dots when they're selected and as pink dots when they're not. Because you just loaded the factory defaults, all eight vertices of the cube should be selected.

In Blender 2.59/2.60 the vertex(ices) that are either unselected/selected are the following colors: Unselected will be black; Currently selected will be white; Already selected (other than the current selection) will be orange. Also note that these colors correspond to edge selections as well.

To clear the boards for your first model, delete all of the cube's vertices:

  1. Press  X 
  2. A "Delete" menu will pop up. Choose Vertices.

Now you can repeat the previous exercise using mouse and monitor instead of pen and paper.

After step 3
  1. Create a vertex by clicking with  Ctrl + LMB .
  2. Create another vertex. Blender will automatically join the two vertices with an edge.
  3. Create additional vertices (and edges) by clicking  Ctrl + LMB , but don't attempt to close a loop yet.

To create a face:

  1. Press  A  to deselect all vertices.
  2. Move the mouse to one of the vertices you want in the face.
  3. Click  RMB  (or  Cmd + LMB ) to select the vertex.
  4. Move the mouse to another vertex you want in the face.
  5. Click  Shift + RMB  (or  Shift + Cmd + LMB ) to add it to the selection.
  6. Continue adding vertices until you have three or four selected.
  7. Press  F  to create the face.
Note:

Pressing  A  performs a “deselect all” operation only if something is selected. If nothing is selected, it performs a “select all” operation.

Note:

Pressing  Shift + RMB  does a "select" only if the vertex isn't already selected. If it is, it deselects the vertex.

Note:

If you make a mistake, you can undo your work step-by-step by pressing  Ctrl + Z .

A completed 3D mesh

Create additional faces until all vertices belong to at least one face. Congratulations! You've just created your first 2D mesh in Blender.

You can reshape your mesh by moving vertices with the "grab tool".

To move one or more vertices:

  1. Select the vertices using  RMB  and  Shift + RMB .
  2. Drag in the viewport with  RMB  (or press  G ) to activate the grab tool.

The 3D View header will be replaced by numbers: "Dx: 0.0000 Dy: 0.0000 Dz: 0.0000 (0.0000)". You're now using the "grab tool" and can drag the vertex around using the mouse.

The grab tool disables most of the normal hotkeys, so it's important to know how to get out. You can exit the tool at any time using:

  •  LMB  or  Enter  to confirm the changes

or

  •  RMB  or  Esc  to cancel the changes.

If you're up for a challenge, try making your mesh 3D:

  1. Change the viewpoint, perhaps to one of the perfect views.
  2. Add vertices and/or move the existing ones around in the new view plane.
  3. When you're done, rotate to a new viewpoint to examine your work.

Now that you know how to create and grab vertices, you're ready for a quick lesson in extrusion and merging.

Additional Resources

[edit | edit source]

Quickie Model

[edit | edit source]
Your goal.

In this module, you'll learn how to extrude and merge vertices of a mesh and how to save a model. This module also introduces the File Browser window type.

Your first model will be a house, which we will develop over the course of several modules. Here we will start with four walls and a pyramidal roof. Simple! Since you're going to use the default cube as a base, all you actually need to build is the roof!

Editing in Blender generally involves four steps:

  1. Selecting an object to edit.
  2. Activating Edit Mode on that object.
  3. Selecting part(s) of the object to act upon.
  4. Specifying the action(s) to be performed on those parts.

Bring up the Default Cube

[edit | edit source]
The default cube in Object Mode.
  1. Launch Blender.
  2. Load the factory settings using File → Defaults → Load Factory Settings.

This should give you a perspective view of a scene containing three objects:

  • a cube,
  • a light source,
  • a camera.

Setting up the Viewport

[edit | edit source]

It will be easier to work on the roof of your house in a perspective side view:

  1. Press  Num3  to switch to a "perfect" right side view.
Note:

 Num5  puts the viewport into perspective only if it's not already in perspective. Otherwise,  Num5  switches the viewport back to orthographic view.

"Right Persp" will be shown on the top left of the 3D View. The "up" (Z) direction in the scene is now "up" on your monitor as well.

It will also help to zoom in a bit:

  1. Make sure the 3D View window is active (which means your mouse cursor is in it).
  2.  SCROLL  or press  Num+  a few times until the cube is about 1/3 the height of the viewport.

Because you just loaded the factory defaults, the 3D transform manipulator will be enabled. For mesh editing, it will help to turn the manipulator off:

  1. Make sure the 3D View window is active.
  2. Press  Ctrl + Space  to toggle the manipulator on or off.

Press  Tab  once. This puts you into Edit Mode on the selected object, i.e. the cube.

Note:

If the lamp and/or camera were selected instead of (or in addition to) the cube, you wouldn't be able to enter Edit Mode. (Cameras and lamps are edited in a different fashion.)

Here's how the cube should look at this point:


Examine the 3D View header to verify Blender is in Edit Mode and Vertex select mode with Occlude background geometry "on".


Note:

The Occlude Background Geometry button is only visible when Blender is in Edit Mode and the draw type is Solid, Shaded, or Textured.

The default cube is constructed as a mesh. Now that you're in Edit Mode, you can access the individual vertices, edges, and faces that make up the mesh. The default cube consists of eight vertices, twelve edges, and six faces.

Adjusting the Height

[edit | edit source]

Right now, all eight vertices are selected, so any vertex edits you make will affect them all. For instance, if you were to move a vertex, the other seven vertices would follow. In order to build a roof peak for the house, you need to alter just the four top vertices of the cube. To do that, you must change the selection so that only those vertices are selected.

  1. Turn 'Occlude Background Geometry' off, so you can see all vertices. Note, in newer versions, this button is called "Limit Selection to Visible." It is one of the buttons to the right of transform orientation which is to the right of the mode select which should be currently set to "edit mode".
  2. Deselect the bottom four vertices, one by one, using  Shift + RMB .

The picture to the right shows the cube (in right perspective view and occlude background geometry "off") with the correct vertices selected.

Note:

Remember, if you make a mistake, you can undo your work step-by-step by pressing  Ctrl + Z .

Now you'll adjust the height of your house's ceiling. Activate the grab tool:

  1. Make sure Blender is in Edit Mode, with the relevant part(s) of the object selected.
  2. Make sure the 3D View window is active.
  3. Press  G .

The 3D View header will be replaced by numbers: "Dx: 0.0000 Dy: 0.0000 Dz: 0.0000 (0.0000)".

You want to lower the ceiling without making the walls crooked. This is hard to do freehand, but happily the grab tool provides an option for doing just that.

With the grab tool activated:

  1. Press  Z  to limit movement to the global Z-axis.


Now when you move the mouse pointer around, Blender will adjust the height of your ceiling without making the walls crooked. (You can also limit grabs to the X and Y axes and in many other ways.)


When your ceiling is the height you want, confirm the grab with  LMB  (or  Enter ).

Extruding

[edit | edit source]
Step 7: the extruded attic, ready to confirm

Now you're going to "add on" to your house by extruding. Extrusion begins by duplicating selected parts of an object. Then the new parts are pulled away from the old ones, with new faces and edges created as necessary.

To add an attic to your house:

  1. Make sure Blender is in Edit Mode, with the top four vertices selected.
  2. Make sure the 3D View window is active.
  3. Press  E  to activate the extrude tool.
  4. Restrict movement to the Z axis and move the mouse pointer upward.
  5. When the attic is the height you want, confirm the extrude with  LMB  or  Enter .
  6. Keep the extrusion visible: you will need it for the next exercise.
Note:

At the end of this process only the four new vertices (the upper corners of the attic) will be selected. The others (including the four that were originally selected) will not be selected.

Note:

If you cancel an extrude operation without confirming it, duplicate vertices and edges have already been created. If this isn't what you wanted, use  Ctrl + Z  to undo the duplication.

Merging

[edit | edit source]
The Specials menu

You can change the roof from a flat one to a pyramidal one by merging the vertices of the roof:

  1. Make sure that you still have the extruded roof from the previous exercise visible.
  2. Make sure Blender is in Edit Mode, with the four top-most vertices selected.
  3. Make sure the 3D View window is active.
  4. Press  W  to bring up the Specials menu.
  5. Select Merge. (You can also access this by pressing  Alt + M .)
  6. The Merge menu should pop up, select At center.

A message should appear on the Info header saying that 3 vertices have been deleted, this is because in order to merge four vertices into one, three vertices must be deleted.

Your house now has a pyramidal roof!

Saving your Work

[edit | edit source]
Saving the .blend

We will be developing the house in later modules, so save your work now. To save the current scene in a .blend file:

  1. Press  F2  (or select File → Save As). The active window temporarily changes into a File Browser window.
  2. Navigate to the directory (folder) where you want to write the file by clicking  LMB  on directory names in the File Browser window. (Clicking on ".." will take you up one level.)
  3. If you wish to name the file something other than "untitled.blend", type a filename in the text box to the left of the "Cancel" button. (The .blend suffix will be added automatically.)
  4. Click  LMB  on the "Save As Blender File" button. As soon as the save operation is complete, the window will automatically revert to its former type.

Saving Further Changes

[edit | edit source]

Once you have saved your work to a file for the first time, you can save subsequent changes to the same file name by pressing  CTRL + S  and confirming you want to overwrite the existing file.

Additional Resources

[edit | edit source]

Quickie Render

[edit | edit source]

If you haven't completed the "Quickie Model" module, do so now. You will need the resulting model for this module.

Now that you've created your first model, you'll probably want to try rendering it. Your first render, with a single light source and only nine faces, should finish quickly. However, as your 3D scenes become more complex, you'll find that rendering can take a long time.

In this module, you'll render your quickie model and save the result in various file formats. You'll also learn how to aim cameras and create lamps.

Rendering the Quickie Model

[edit | edit source]
  1. Launch Blender and load factory settings.
  2. To load the house model from the previous module, select File → Open Recent, and select the file you saved. Alternatively, press  F1  or select File → Open, find the file, and open it. As soon as the operation is complete, the window will load the quickie model that you created in the previous exercise.
  3. Press  F12  or select Render → Render Image. This opens the Image Editor so you can watch the render progress.
If F12 is in use by the window manager...
  • With the new Apple keyboard, use  Fn + F12  to avoid the Mac Dashboard.
  • With Macintosh OS X 10.5, use  Alt + Fn + F12 .
  • With Gnome, use  Alt + F12  to avoid the Gnome Search Dialog.


Note:

You can stop a render in progress by pressing  Esc  any time the render window has the focus. Bear in mind this will stop the rendering of the current frame and abandon any partial results. Pressing  F12  will start rendering the image from the beginning again.

Seeing Your Render

[edit | edit source]

By default, pressing  F12  will switch to the UV/Image Editor window, and show your render there. You can switch back to the 3D view with  F11 . Pressing  F11  in the 3D view will switch you to the UV/Image Editor window without redoing the render, i.e. you will see the same image as last time.

Aiming the Camera

[edit | edit source]

If you don't get a picture of the house, or if the picture is not framed well, try moving or re-aiming the camera:

  1. Press  Esc  to get back to Edit Mode, if needed.
  2. Press  Num0  to take the camera's viewpoint.
  3. Press  Shift + F  to put the 3D View window into camera fly mode.

In camera fly mode, you can:

  • Pan and tilt by moving the mouse pointer up, down, left, or right.
  • Accelerate by  SCROLL  forwards.
  • Decelerate by  SCROLL  backwards.
  • Press any key or button to exit fly mode.

(It works differently in version 2.70 and later, more like a FPS game with possibility to slide and so on, buttons are regular FPS controls)

When you're done positioning the camera, try rendering again.

Lighting

[edit | edit source]

If your cube is completely black, you may not have a lamp in the scene. Either the default lamp got deleted, or you're using a version of Blender that doesn't provide a default lamp.

To add a lamp:

  1. Make sure Blender is in Object Mode.
  2. Place the 3D cursor where you want the lamp to go; or add the lamp then immediately grab it, and move it somewhere else.
  3. Press  Shift + A .
  4. In the popup menu, select Lamp → Point.

Saving the Render

[edit | edit source]

This is old information and is no longer valid. Saving the scene (with  F2 , for instance) does not save any renders. Saving renders is a separate step.

To save your current render :

  1. Make sure you are in the Image Editor. If not press  F12  to render
  2. Press  F6 . This temporarily changes the active window into a File Browser window. (in the older versions you use F3 but in the newer versions the button can be FN + S or SHIFT + S
  3. Navigate to the directory (folder) where you want to write the file.
  4. Type a filename in the text box (to the left of the "Cancel" button).
  5. To the left of the window, choose your preferred file type.
  6. Click  LMB  on the "Save as Image" button. As soon as the save operation is complete, the window will return to the Image Editor.

Renderer Selection

[edit | edit source]

Blender offers a choice of different rendering engines for producing images. The menu for selecting from these appears in the Info window (the thin one that contains the menu bar at the top of the default layout). In most of these tutorials, you will leave this choice set at Blender Render. But it is worth knowing what other choices are available:

  • Blender Render—the oldest renderer, commonly known as the Blender Internal renderer. Built into Blender right from its early days. Can still produce good results with the right tricks, but considered by the Blender developers to be antiquated and not worthy of continuing development.
  • Blender Game—this is the renderer used by the Blender Game Engine. Designed to be fast enough for interactive use in a game, which means there are limitations in the quality of renders it produces. You also use this renderer to create rigid-body physics simulations.
  • Cycles Render—for this and other choices, see Advanced Rendering.

Render Control

[edit | edit source]

The top panel under the Render tab in the Properties window shows 3 buttons and a menu. The first button renders a single frame, equivalent to  F12 . The other two buttons are more relevant to animations.

The “Display:” menu controls what happens when you press  F12 : the default “Image Editor” causes the 3D view to be switched to the UV/Image Editor showing the rendered image. “Full Screen” causes the UV/Image Editor display to take over the entire screen, while “New Window” makes it appear in a separate OS/GUI window (similar to how older versions of Blender used to work). Finally, “Keep UI” causes no changes to your window layout at all; you have to explicitly bring up the Image Editor with  F11  to see the rendered image.

Render Image Dimensions

[edit | edit source]

You can control the size of the image that Blender creates when rendering. This is specified in the “Dimensions” panel under Render properties. Apart from the menu at the top, the settings in this panel are grouped into two columns:

  • The column on the left controls settings for a single image.
  • The column on the right specifies additional settings for rendering a whole sequence of images as part of an animation. These settings will be discussed later.

At the upper left, under “Resolution:”, we have the dimensions in pixels of the image (the default settings are 1920×1080 as shown in the screenshot), plus an additional scale factor slider below (showing 50% by default). With these settings, the image will actually be rendered at (1920×50%)×(1080×50%) = 960×540. Having the scale factor is a convenience. Rendering smaller, lower-quality images is faster, which speeds up initial work on your model, but you'll want full quality for the final result. Instead of mentally having to work out numbers for render quality, you can simply set the resolution to full quality, and use the scale factor to reduce this to, say, 50% or 25% for interim work, then set it to 100% for the final output.

Image File Formats

[edit | edit source]

You set the format and location for saving rendered images in the “Output” panel under the Render properties.

In current versions of Blender, the default format for saving rendered images is PNG. This is a lossless format which has the option for alpha transparency (which means the sky background is replaced by transparent pixels—enabled by clicking the “RGBA” button). This is a good format if you intend to do further work with the image (e.g. in an image editor like Gimp or Photoshop), but the files can be large.

JPEG is a lossy image format, which means it throws away information that the human eye doesn’t see. This produces much smaller files than PNG, and is adequate if you just want to upload the render directly for use in a Web page or other such document, but is not the best choice if you intend to do further processing of the image. It also doesn’t support alpha transparency.

To change the render file format:

  1. Switch to the Render tab in the Properties window.
  2. Look for the “Output” panel.
  3. Click  LMB  on the popout menu with the current file format.
  4. Select your preferred format.

Additional Resources

[edit | edit source]

Improving Your House

[edit | edit source]
Your goal.

In this module, you'll refine the house model you created two modules ago. In the process, you'll learn how to access Blender's predefined meshes and how to set a pivot point. You'll also learn how to select, extrude, delete, and subdivide the edges and faces of a mesh model.


To begin, set up Blender as follows:

  1. Launch Blender and load the factory settings.
  2. If you have a numpad, make sure NumLock is on.
  3. Load the house model you created in the "Quickie Model" module.
  4. If the 3D manipulator is active, disable it.
  5. Adjust the viewpoint until you can clearly see two walls of the house and two sides of the roof.

Adding a Ground Plane

[edit | edit source]

Your house needs some ground to rest on. You can model the ground as an object in your scene. Blender has many predefined mesh objects built in. Happily, one of these is a flat, square surface.

Recall that new objects are added at the 3D cursor. Before creating the ground, you should position the cursor at ground level:

  1. Select the house by clicking  RMB  on it.
  2. Enter Edit Mode by pressing  Tab .
  3. Select one of the bottom vertices by clicking  RMB  on it.
  4. Bring up the Snap menu by pressing  Shift + S .
  5. Choose Cursor to Selected.
  6. Leave Edit Mode by pressing  Tab  so your ground is created as a separate object.
Note:

There's an "Aligned To View" setting in the "Editing" tab of User Preferences which is off by default in Blender 2.5x. When this setting is on, the orientation of new objects depends on the current viewpoint. Pre-2.48a releases of Blender had "Aligned To View" on by default. If you've turned this setting on (or are using an old release) go to "top view" (by pressing  Num7 ) before creating the ground object.

The ground added.

Now create the ground object:

  1. Activate a 3D View window.
  2. Press  Shift + A .
  3. Choose Mesh → Plane.
The scaled ground.

To enlarge (or scale) the ground object, use the scale tool:

  1. Make sure Blender is in Object Mode.
  2. Select the ground by clicking  RMB  on it.
  3. Activate the scale tool by pressing  S .
  4. Type  7key  to enlarge the ground 7x.
  5. Press  Enter  or  LMB  to confirm and exit the scale tool.

Scaling with a Pivot

[edit | edit source]

Suppose you want to shrink the house by 50%. As you can probably guess, this would be done with the scaling tool. However, if you did so right now without the right pivot point, the reduced house would no longer rest on the ground (check this by selecting the house and scaling it to 0.2). Blender scales (and rotates) objects around a pivot point, which by default is located at the median point (geometric center) of the selected object(s).

In order to scale the house while keeping its base on the ground, you need the pivot point to be at ground level. Since the 3D cursor is at ground level, you can do this as follows:


Origin to 3D Cursor Menu Item.
  1. Make sure Blender is in Object Mode.
  2. Select the house by clicking  RMB  on it.
  3. In the 3D View header, click  LMB  on menu item "Object" and put the mouse cursor over Transform and select Origin to 3D Cursor from the pop-up menu. This can also be done with Ctrl+Shift+Alt+C, select Origin to 3D Cursor from the pop-up menu. (A.K.A. select "Object" which is just left of where you've been going into object mode/edit mode, as shown in the image. So Object>Transform>Origin to 3D Cursor)

The origin of the house is now at the center of the 3D cursor. If you scale the house, the place where the 3D cursor is located will remain fixed, and everything else will expand or contract from that point. The pivot is marked with an orange-filled circle. Do not mistake it for a selected vertex.

Edge Selection

[edit | edit source]

It is often useful to select edges instead of vertices.

The select mode buttons.
  1. Make sure Blender is in Object Mode.
  2. Select the house by clicking  RMB  on it.
  3. Press  Tab  to enter edit mode.
  4. Click  LMB  on the Edge select mode button in the 3D View header.

In Edge select mode, edges appear as orange or white line segments when they're selected and as black line segments when they're not.

Just as you selected vertices in Vertex select mode, you can now select (and deselect) edges in the same way as vertices. This is also the same for Face select mode.

If you have difficulty selecting particular edges with the mouse...

It may be because those edges are doubled. This can happen if you cancel an extrude operation and forget to undo the duplication. Here's a solution:

  1. Switch to Vertex select mode.
  2. Activate a 3D View window.
  3. Select all vertices by pressing  A  once or twice.
  4. Press  W  to bring up the "Specials" menu.
  5. Choose Remove Doubles.

Extruding Edges

[edit | edit source]

You can extrude edges in much the same way as you extrude vertices.

Step 5

To add an overhang to the roof of your house, first move the pivot point to the peak of the roof:

  1. Switch to Vertex select mode.
  2. Select just the vertex at the peak of the roof.
  3. Press  Shift + S  to bring up the Snap menu.
  4. In the Snap menu, choose Cursor to Selected to move the 3D cursor to the peak.
  5. Use the "Pivot" menu (located to the left of the 3D Manipulator button) in the 3D View header to change the pivot to "3D Cursor".
After step 2

Now extrude by scaling from that point:

  1. Switch to Edge select mode.
  2. Select just the four edges at the base of the roof.
  3. Press  E  to activate the extrude tool. The effect is that you have just made a copy of the four edges.
  4. Press  S  to scale the four edges uniformly from the pivot point.
  5. As you move the mouse pointer away from the pivot point, the roof of your house will expand.
  6. When the roof is the size you want, confirm by  LMB  (or pressing  Enter ).
  7. Press  CTRL + SPACE  to toggle the manipulator on then make the overhangs slanted by holding  LMB  on the blue arrow that appears in the center of the house, and dragging down.
After step 7

Face Selection

[edit | edit source]

It is often useful to select faces.

The select mode buttons after step 2
  1. Make sure you're in Edit Mode on the house.
  2. Click  LMB  on the Face select mode button in the 3D View header.

In Face select mode, the center of each face is marked with a small square. Faces appear as orange or stippled grey areas with orange edges when they're selected (depending on which face is active), and as grey areas when they're not.

Just as you selected edges in Edge select mode, you can now select (and deselect) faces:

  • If any faces are selected, press  A  to deselect all faces.
  • If no faces are selected, press  A  to select all faces.
  • To select a single face (and deselect the rest), click  RMB  (or  Cmd + LMB ) on the center of the face.
  • To toggle the selection status of a face (without affecting the rest), click  Shift + RMB  on the center of the face.
The three faces on the +X side, selected

Use these techniques to select all three faces (two roof and one wall) on the +X side of your house, as shown.

  • Remember that the positive direction of the axis is the direction the arrows point to.

Extruding Faces

[edit | edit source]

Just as you extruded edges to grow the roof, you can extrude faces to grow the entire house.

After step 6

To double the size of your house without changing the pitch of the roof:

  1. With the three faces on the +X side selected, activate a 3D View window.
  2. Press  E  to activate the extrude tool.
  3. Press  X  to extrude along the X axis
  4. As you move the mouse pointer in the +X direction, the +X half of your house will expand.
  5. Press  2  to expand by exactly 2 Blender units. (If you scaled your house earlier, you must change this value accordingly, e.g. scaling by 50% means you press  1 .)
  6. Confirm and exit the extrude tool by clicking  LMB  (or pressing  Enter ).

Deleting Edges

[edit | edit source]
After step 2

If you look closely at the model, you'll notice an extra edge, inside the house, connecting the seams between the two halves of the roof. To delete this edge:

  1. Edit the house object in Edge select mode.
  2. Select just the edge you want to delete.
  3. Press  X  or  Delete .
  4. When the "Delete" menu comes up, choose Edges.
Note:

Deleting an edge automatically deletes any face(s) that include that edge.

Subdividing Faces

[edit | edit source]

In order to add openings such as doors or windows to the walls of your house, you'll need to subdivide the wall (vertical) faces into smaller faces.

After step 2

To subdivide each wall face into a 10x20 grid:

  1. Make sure you are not in wire-frame mode (otherwise the occlude hidden geometry button will not appear)
  2. Edit the house object in Face select mode.
  3. Select all six wall faces of your house.
  4. Press  W  to bring up the Specials menu.
  5. Choose Subdivide.
  6. Set the number of cuts to 9 in the Operator panel (also accessible through F6).
Note:

In some versions of Blender older than v2.70, there may be a bug that prevents the subdivide function from operating properly.

You might be wondering why to make 9 cuts instead of 10, the reason is that in case of dividing a finite surface along one axis there will be always n-1 cuts to generate n single faces. Here the number of cuts is applied in 2 dimensions. So, if you count the number of faces on the subdivided walls, you will find a 10x20 grid. The reason why there are 20 faces instead of 10 lengthwise is because you doubled the size of the house along the X axis (lengthwise).

After step 6
Step 2
After step 3.2

Now you can extrude windows and doors:

  1. Edit the house object in Face select mode.
  2. Turn on the "Limit selection to visible (clipped with depth buffer)" (for old Blender versions "Occlude background geometry") option by clicking  LMB  on the toggle button in the 3D View header.
  3. For each wall of the house:
    1. Go to the perfect view for that wall:
      •  Num1  for "front"
      •  Ctrl + Num1  for "back"
      •  Num3  for "right"
      •  Ctrl + Num3  for "left"
    2. Select faces where you want to create a window or door. An easy way to do this is by:
      1. Deselecting all faces by pressing  A  once or twice.
      2. Pressing  B  to activate the Border Select tool.
      3. Clicking and dragging  LMB  to delimit a rectangular area.
      4. After you release  LMB , all faces in the rectangular area will be selected.
    3. Press  E  to activate the extrude tool.
    4. Extrude inward 1/10th of a BU by typing  -.1  and confirming it with  Enter  or  LMB .

Final Steps

[edit | edit source]
  1. Adjust the position of the lamp and aim the camera until you obtain a good render.
  2. Save your work!

Extruding a Simple Person

[edit | edit source]
Your simple person will look like this.

In this module, you will model a simple human figure. Along the way, you will practice using extrusion and learn additional ways to select vertices, edges, and faces.

Start a New Scene

[edit | edit source]
  1. Start with the default cube (File → Load Factory Settings) and NumLock "on".
  2. Press  Tab  to edit the cube.
  3. Scale the cube down 50% by pressing  S   .   5KEY   ENTER .

Selection Methods

[edit | edit source]

Just as you did for the house model, you will begin by selecting the top four vertices of the cube. This section presents six methods for doing so.

Ease of selection depends partly on the viewport settings and viewpoint. For greatest ease, you want a view in which the parts you are trying to select are both visible and close together.

For clarity, use a view of the cube in which all vertices are visible:

  • Go to right side view with  Num3 .
  • Disable the manipulator widget with  Ctrl + Space .
  • Make sure the Limit selection to visible option is "off".

The picture on the right shows the cube with the correct vertices selected.

To begin, make sure you start in Vertex select mode.

Border Select Tool

[edit | edit source]

The border select tool selects things that lie in a rectangular region of the viewport.

  1. Activate (place the mouse pointer in) a 3D View window.
  2. Deselect all vertices by pressing  A .
  3. Press  B  to activate the border select tool. Two dashed gray lines should appear, one vertical and one horizontal, forming a crosshair in the viewpoint.
  4. Click and drag  LMB  diagonally across the area you want to select. The area will be outlined in dashed gray lines.
  5. When you release the mouse button, the vertices inside the rectangle will be added to the selection.

Practice selecting the top four vertices this way. If you make a mistake, press  A  and try again.

Circle Select Tool

[edit | edit source]

The circle select tool selects or deselects things that lie in a circular region of the viewport.

  1. Activate a 3D View window.
  2. Deselect all vertices by pressing  A .
  3. Press  C  to activate the circle select tool. A dashed gray circle should appear. note: Prior to Blender 2.5  B  B  twice.

When this tool is active, you can do various things:

  • To move the select area, simply move the mouse pointer.
  • To resize the select area, use  SCROLL  or  Num+ / NUM− ..
  • To select all vertices within the circle, click  LMB .
  • To deselect all vertices within the circle, click  MMB  or  Shift  +  LMB .
  • To deactivate the tool, press  Esc  or  RMB .

Practice selecting the top four vertices this way. If you make a mistake, press  A  and try again.

Lasso Select Tool

[edit | edit source]

Like many graphics programs, Blender 3D has a lasso select tool.

  1. Activate a 3D View window.
  2. Deselect all vertices by pressing  A .
  3. Click and hold  Ctrl + LMB .
  4. Drag the mouse pointer in a loop around the vertices you want to select. As you drag, a dashed gray line will appear.
  5. You can deselect with lasso by pressing  Ctrl + Shift + LMB .
  6. Release the  LMB  when you're done.

Vertex by Vertex Selection

[edit | edit source]

You can select (or deselect) vertices one by one, as you did in the "Quickie Model" module.

  1. Click  RMB  on a vertex to make it the only selected vertex.
  2. Toggle the select state of additional vertices by clicking  Shift + RMB .

Edge Select Mode

[edit | edit source]

You can select (or deselect) edges one by one, as you did in the "Improving Your House" module.

  1. Click  LMB  on the Edge select mode button in the 3D View header.
  2. Select the top left edge of the cube by clicking on it with  RMB .
  3. Toggle the select state of top right edge of the cube by clicking on it with  Shift + RMB .
  4. Switch back to Vertex select mode by clicking  LMB  on the Vertex select mode button in the 3D View header.

After you switch back to Vertex select mode, all four vertices in the two selected edges are selected.

Face Select Mode

[edit | edit source]

You can select (or deselect) faces one by one, as you did in the "Improving Your House" module.

  1. Click  LMB  on the Face select mode button in the 3D View header.
  2. Select the top face of the cube by clicking on its center dot with  RMB .
  3. Switch back to Vertex select mode by clicking  LMB  on the Vertex select mode button in the 3D View header.

After you switch back to Vertex select mode, all four vertices in selected face are selected.

Extruding Limbs

[edit | edit source]
The view menu.

The illustrations in this section are in front orthographic view, so:

  • Use  Num5  (or View → Orthographic) to switch to orthographic view.
  • Use  Num1  (or View → Front) to switch to front view.

Region Extrusion

[edit | edit source]
  1. Make sure you're still in Edit Mode, with the top four vertices selected. (Only two will be visible in front ortho view.)
  2. Activate the extrude tool by using  E  (or Mesh → Extrude Region).
  3. Move the mouse pointer upwards. As you do, four new vertices will appear, each connected to one of the four that were previously selected.

The new vertices and their associated edges will move with the mouse pointer. You can lock them into place with  LMB  or  Enter ).

Extruding a Leg

[edit | edit source]

Suppose you want to extrude a region the same size as the default cube -- in other words, one Blender unit on a side.

  1. Undo your previous extrude by pressing  Ctrl + Z .
  2. Activate the extrude tool again by using  E  (or Mesh → Extrude Region).
  3. This time, as you're moving the extruded vertices around, hold down the  Ctrl  key. You'll see that the new vertices will only move in multiples of a Blender unit. This is called snapping, and it makes it easy to extrude by exactly one blender unit. The size of the snapping depends on the zoom level; if you are zoomed out a long way from the object the snapping will be done in large increments and if you are zoomed in close you can snap in finer amounts.

Continue extruding until you have five cubes of equal size stacked atop one another. This will be one leg of your figure.

Note:

Another way to extrude by exactly one Blender unit is to press  1key  while the tool is active.

If you press  2key  when no tool is active, Blender will switch to the second layer, and your (first-layer) object will disappear. To make it visible again, press  1key .

Note:

If you are not using Front Ortho view, the blender unit will be much larger than the cube. Switching to that view will allow for the proper size, although you can manually enter the extrusion as 0.4 units.

Note:

Don't extrude any cube more than a unit at a time. You'll want those extra vertices, edges and faces later in this tutorial.

Note:

If the mesh gets too big for your view, you can zoom out using  SCROLL  or  NUM− 

Extruding the Pelvis

[edit | edit source]
  1. Press  A  until all vertices are deselected.
  2. Rotate the view (by dragging  MMB ) so you can see all four vertices on the right face of the top cube.
  3. Select those four vertices.
  4. Extrude twice to the right.

Extruding the Rest of the Body

[edit | edit source]

The same trick is repeated over and over to build the rest of our simple body.

Note:

To speed things up, you may want to switch to Face select mode. In Face select mode, you can select a face with a single click.

  1. Create a second leg by extruding down four times from the last cube of the pelvis.
  2. Create the torso by extruding up five times from the middle cube of the pelvis.
  3. Extrude to each side from the next-to-top cube of the torso to create arms. (Making sure there are five on each side. Refer to the picture on the top of the page)

To be safe, remove any double vertices you may have inadvertently created:

  1. In Vertex select mode, press  A  until all vertices are selected.
  2. Make sure that you are in Edit Mode, Press  RMB  to bring up the Vertex Context Menu.
  3. Scroll over Merge Vertices, and then select By Distance.

Now check your work:

  1. Return to Object Mode by pressing  Tab .
  2. Make sure the viewport draw type is Solid. (Press  Z  if it isn't.)
  3. Rotate the viewpoint and examine the body from every side (it might be useful to return to perspective view for this).
If any faces are missing...

This is easily fixed. To create a face:

  1. Press  Tab  to go back into Edit Mode.
  2. Select four vertices.
  3. Press  F  (or choose Mesh → Faces → Make Edge/Face from the 3D View header).
  • Note that you can also make edges with this tool if you select two vertices.

Adding the Head

[edit | edit source]
  1. Move the 3D cursor to a point above the neck by clicking with the  LMB .
  2. Adjust the cursor position in orthographic top, front and side views ( Num7 ,  Num1 , and  Num3  respectively) until the 3D cursor is about where the center of the head should be. It may help to use  Shift + S SnapCursor to Grid.
  3. Make sure you're in Edit Mode with a 3D View window active. (If you create the head in Object Mode, it will be a separate object from the body, and changes to the body later in this tutorial won't affect the head.)
  4. Create a sphere using  Shift + A MeshIcosphere.
  5. Leave the default settings for subdivisions and size in the bottom left of the screen. (Note: Your computer may slow down if you set subdivisions above 6)

You should now have a small sphere at the top of the body. To make it more proportional to the body, resize it using the scale tool:

  1. Make sure you're still in Edit Mode, with a 3D View window active and the head selected.
  2. If necessary change the pivot point to Median Point.
  3. Activate the scale tool by pressing  S  (or Mesh → Transform → Scale).
  4. Move the mouse pointer until the head is the size you want.

You may also adjust its position using the grab tool:

  1. Make sure you're still in Edit Mode, with a 3D View window active and the head selected.
  2. Activate the grab tool by pressing  G  (or Mesh → Transform → Grab/Move).
  3. Move the mouse pointer until the center of the head is where you want it.
Note:

If you deselect the head and then decide that you want to select it again:

  1. Hover the mouse pointer over any vertex/edge/face.
  2. Press  L . In Edit Mode this will select all vertices that are linked to the vertex nearest the mouse pointer.

Now check your work:

  1. Return to Object Mode by pressing  Tab .
  2. Make sure the viewport draw type is Solid. (Press  Z  if it isn't.)
  3. Rotate the viewpoint and examine the body from every side. Make sure that the head connects properly to the neck.

Save Your Work

[edit | edit source]

You will continue working on your simple person model in the next module.

To save the scene in a .blend file:

  1. Press  ctrl  +  S  (or select File → Save).
  2. Navigate to the directory (folder) where you want to write the file.
  3. Type a filename in the text box to the left of the "Cancel" button.
  4. Click  LMB  on the "Save Blender File" button.

Smoothing Your Simple Person

[edit | edit source]
Your goal.

Few real-life objects have perfectly sharp edges. People, in particular, consist of mainly smooth surfaces. How does one model a smooth object using flat faces and sharp edges?

In this module, you'll learn how to smooth a mesh by using subsurfaces and smooth shading.


You'll need the simple person model from the previous module. If you haven't done it, either go back and do it now or download the pre-made model from Yosun Chang's website at http://www.nusoy.com/blender.


If the model doesn't look solid, your Viewport Shading setting may be set to Wireframe. To switch to Solid shading:

  1. Activate the 3D View window.
  2. Press  Z .

Subsurfaces

[edit | edit source]
The sub surface modifier.

So far, all the meshes you've created have had sharp edges, giving them a faceted appearance like that of a cut diamond. To model a smooth object (like a human body) you might think you need a huge number of vertices and faces. Subsurfaces partly solves this problem by automatically subdividing a mesh into a finer mesh suitable for smooth rendering.

You subsurface in Blender by adding a subsurf modifier to an existing mesh object. A modifier is simply an algorithm (automatic process) which can be added to an object. (Blender modifiers are analogous to Photoshop adjustment layers.)

To get started, make sure Blender is in Object Mode, with only the simple person object selected:

  1. If Blender is in Edit Mode, press  Tab .
  2. To select the simple person,  RMB  on it.

To add a subsurf modifier to the selected object:

  1. Click on the modifiers tab (wrench icon) in the Properties window.
  2. Add Modifier → Subdivision Surface.

You could also add subsurf modifier by pressing  Ctrl + 1Key .

The object's appearance should immediately become more faceted and more rounded. In addition, several subsurface controls will appear in the Modifiers tab.

Note:

The modifier has been added, but it hasn't actually been "applied" yet. (Applying a Blender modifier is analogous to flattening a Photoshop adjustment layer.)

If a few faces don't subsurf...

The model may include some double vertices. To get rid of these:

  1. Edit the model in Vertex select mode.
  2. Select all vertices.
  3. Mesh → Vertices → Remove Double
  4. Try again.
If Blender crashes when you attempt to subsurf an object...

You need to look in to upgrading (or possibly even downgrading) your graphics drivers. Having the right graphics driver can avert many problems.

What just happened? The default subsurf modifier (one level of Catmull-Clark) subdivided each face of the object into four smaller faces that are progressively angled. This softened the sharp edges of the original model where faces met at 90-degree angles.

Controls

[edit | edit source]

For this model, one level of subsurf isn't quite enough. To increase the number of levels to two, just increase the number in the text box directly underneath Subdivisions. The View setting controls the number of subdivision levels visible in the viewport. This is very useful when you have a high-poly scene, just decrease the number of visible subdivisions to speed up viewport action.

You can specify additional levels of subsurfing to be used during renders. For extra smooth renders, you might want three levels of subsurfing. Set this with the Render control immediately below the View control.

The Apply button applies the modifier to the mesh. Do not click it yet. We'll be playing with the model a bit longer before we apply the changes. While useful with some modifiers, applying a subsurf modifier produces a very complex mesh, and there's no need to do so here.

Remember that you can undo any accidental modifications with  Ctrl + Z .

Blender can combine a series of modifiers by stacking them. For this reason, the Modifier tab includes buttons for arranging and removing modifiers.

You can hide edges created by the modifier by activating the Optimal Display toggle button. The effect is especially clear with the Wireframe draw type.

You can edit the mesh in modified form (without actually applying the modifier) by activating the Adjust edit cage to modifier toggle button, a small button with a triangle and vertices, to the left of the Up/Down arrows (the arrows are for changing the position of the modifier in the stack) in the Modifier panel.

Try this out:

  1. Press  Tab  to enter Edit mode.
  2. Make sure Blender is in Vertex select mode.
    Note that the vertices no longer lie on the surface of the object.
  3. Activate the Adjust edit cage to modifier button.
    Now all vertices lie on the surface of the object, and you can adjust the (modified) vertices directly. However, any additional vertices created by the modifier cannot be directly edited without applying the modifier.

You will be editing the boxy version of the simple person awhile longer, so before continuing, deactivate the Apply modifier to editing cage during Editmode button.

Smooth Shading

[edit | edit source]
Your simple person after setting smooth.

Subsurfaces do a good job of smoothing out corners in meshes. Even with two levels of subsurfaces, however, the simple person does not look completely smooth; when viewed close up, it has a scaly appearance. This is because each face is flat shaded—shaded to resemble a flat surface—resulting in sudden changes in brightness at most edges. For a smooth object, you want smooth shading, which smooths out the changes in brightness.

  1. Go to Object Mode.
  2. Set the draw type of a 3D View window to "Solid".
  3. Select your subsurfed object.
  4. In the Toolshelf on the left, look for a caption called Shading. Under it should be a button called Smooth.
    All the mesh edges will be smoothed out, leaving no sudden changes in brightness. The faces blend smoothly into one another, making the edges nearly invisible. If the icosphere has not smoothed properly and is dimpled, enter Edit Mode by pressing  Tab , select all vertices (A) and recalculate the normal direction (CTRL+N). This is also available in the Toolshelf under Normals.
  5. Click the other button under Shading in the Toolshelf, named 'Flat'.
    The edges will reappear. Now you know the difference between Flat and Smooth.
  6. Since the model looks better with smooth shading, click  LMB  on the "Smooth" button again.

Note that if you didn't have subsurf enabled, then the mesh wouldn't look much different. This is because smooth shading doesn't affect the mesh shape, it just changes how the computer draws the triangles.

Smooth shading also removes a lot of definition. A good way to get rid of this is simply to add a subsurf modifier like you just did. The modifier will not only require fewer vertices, but add definition.

Save your work. You will continue refining this model in the next module.

Additional Resources

[edit | edit source]

Improving Your Simple Person

[edit | edit source]

In this module, you'll edit a subsurfed mesh using the scale and grab tools, all the while improving your character.


You'll need the simple person model from the previous module. If you haven't done it, either go back and do it now or else download the pre-made model from Yosun Chang's website at http://www.nusoy.com/blender.

Widening the Torso

[edit | edit source]

To be realistic, the simple person's torso needs to be three times wider. In order to keep the torso symmetrical, you'll expand it by scaling both sides from a central point.

Select the sides of the torso:

  1. Enter edit mode on the simple person.
  2. In the 3D View header, set Face select mode.
  3. From the 3D View header, choose Pivot → Median Point.
  4. In the 3D View header, make sure Proportional Edit button is off.
  5. Select the two faces on both the left and right sides of the torso, between the armpits and the waist.
Note:
The cube icon toggles the visibility of certain components.

When editing in solid mode, the vertices, edges and faces on the back side of the model are, by default, invisible. This feature can be toggled by clicking  LMB  on the Limit selection to visible (called in older versions, "Occlude Background Geometry") button in the 3D View header. Toggle it on and off a few times and observe how the back faces appear and disappear.

We will now scale the torso with the scaling tool:

  1. Activate the 3D View window and press  S ,  X .
  2. Adjust the amount of scaling. Either:
    • Move the mouse pointer until the torso is the width you want.
    or
    • Press  3 
  3. Confirm and exit by pressing  Enter or clicking  LMB .
Note:

Scaling faces causes adjacent edges and faces to move, due to their shared vertices. You cannot separate a face or edge from its vertices.

Continue selecting different parts of the torso and scaling them to get more practice using the above scaling methods.

Bending the Arms

[edit | edit source]
Removing the forearm

When you've got the basic shape of the torso, make the person hold up his hands. You'll do this by deleting the forearms and then extruding upward from the elbows.

Select both forearms:

  1. Enter edit mode on the simple person.
  2. In the 3D View header, set Face select mode.
  3. With the 3D View window active, press  A  until all vertices are deselected.
  4. Select the five faces at the end of the forearm.

Now erase them:

  1. Press  X  to open the Delete menu.
  2. Choose Faces.

The forearm will disappear, leaving a hole. Don't panic; we'll fix it later. Now to make the arm point upwards:

  1. Select the top face of the last remaining "arm cube".
  2. Extrude the region upward by two Blender units  E ,  2  and confirm with  LMB  or  Enter .

Note:
In versions of blender before 2.7, the combination should be  E ,  Z ,  2 .

The hole in the elbow is caused by a missing face. To fill in the missing face:

  1. Deselect all vertices.
  2. Select the four vertices surrounding the missing face.
  3. With the 3D View window active, create the face using either
    • Mesh → Faces → Make Edge/Face
    or
    •  F 
Note:

If a Make Faces menu appears when you try to fill the hole, it may be that you have some doubled vertices. You can remove doubles by selecting the whole mesh in edit mode, then pressing  W  and in the appearing menu "Remove Doubles" and try again.

The new face should be smooth. If it isn't, make it so, using Mesh → Faces → Shade Smooth.

Repeat on the other side

Go through the same steps (erase, extrude, and fill) on the other arm. Be sure to deselect all vertices in the first arm before selecting any in the other arm. If you have difficulty making the arms symmetrical, undo your work and go through the steps simultaneously on both arms.

Making Feet

[edit | edit source]

To make feet for your simple person, you subdivide the ends of the legs and pull the front edges forward.

  1. Edit the simple person in Face select mode.
  2. Select the two bottom faces of the legs (front of the feet) by clicking  RMB  on the first and then  Shift + RMB  on the other.
  3. Subdivide both faces, either with:
    •  W  Subdivide
    or
    • Mesh → Edges → Subdivide

Each face gets subdivided into four smaller faces.

Now select the front edges and pull them forward:

  1. Switch to Edge select mode.
  2. Press  A  until no edges are selected.
  3. Select the four bottom front edges of the soles (two for each feet) (where the toes should be).
  4. Press  G  and limit movement to the Y axis.
  5. Move the mouse pointer until the feet are the length you want.
  6. Confirm and exit by pressing  Enter  or  Space  or clicking  LMB .
Congratulations! You now have feet.

Reshaping the Head

[edit | edit source]

When you're satisfied with the torso and limbs, you should do something about that head. A bit too spherical, isn't it? You can elongate it by scaling along the Z axis.

When scaling the head, you want to make sure that it stays connected to the neck.

First, place the 3D Cursor at the base of the head, where it meets the neck. An easy way to do this is as follows:

  1. Go into Vertex select mode.
  2. Make sure the Limit selection to visible option is "off".
  3. Select the vertex at the base of the head using  RMB .
  4. Snap the cursor to this vertex using  Shift + S  Cursor to Selected

Now select the entire head:

  1. Hover the mouse over a vertex/edge/face of the head
  2. Press  L  to select all parts linked to that part.
Note:

This works even when the head and body meshes overlap, so long as they aren't linked together anywhere.

Tell Blender that you want to pivot around the 3D Cursor by changing the pivot point to 3D Cursor on the Pivot menu (the small button located to the left of the 3D Manipulator button).

Now scale the head along the Z-axis, using the scale tool ( S , scaling by 1.5 should be about right).


You'll need this simple person later, so remember to save your work!

Spinning a Simple Hat

[edit | edit source]

In this module, you'll create a hat for your simple person. Along the way, you'll learn how to use the Spin tool and use layers.


Creating a Generatrix

[edit | edit source]

For future convenience, you'll create the hat as a new object in the scene containing the simple person. If you haven't created the simple person, either go back and do it now or else download the pre-made model from Yosun Chang's website at http://www.nusoy.com/blender.

Start by changing layers to layer two, then add the basis for your hat:

  1. Make sure you're in Object Mode (so that a new object will be created).
  2. Click  LMB  on the second little square, this will make the viewport display layer two. (The top row is for layers 1 to 10, the bottom for 11 to 20, so layer 2 is immediately to the right of layer 1; layer 6 is across the space from layer 5.)
  3. Go to orthographic front view by pressing  Num5 , then  Num1 .
  4. Create a mesh circle at the cursor, by activating the 3D View window, pressing  shift  +  A  and choosing Mesh → Circle.
Note:

The new circle will probably look more like a line segment than a circle. If so, it's because you're viewing the circle edge-on.

The new mesh object doesn't actually have to be a circle. You could use any sort of mesh object here because you're about to reshape it into a custom 2D mesh (called a generatrix) that describes the profile of your hat. More precisely, the generatrix describes one side of a vertical cross-section through the hat. You'll want your generatrix to have a slope; it should be higher on one side (which will become the top of the crown) than on the other (which will become the brim).

  1. The newly-created mesh should be selected. If it isn't, select it by clicking  RMB  on it.
  2. Press  Tab  to edit the mesh.
  3. Activate Vertex select mode.
  4. Press  A  until all vertices are selected.
  5. Press  X  to erase all vertices.
Note:

Some users are confused as to the purpose of creating the mesh only to delete it afterwards. The point of this process is to create a new "blank" object which you can then shape into a hat.

Now draw your generatrix, starting with the brim and sloping upwards toward the top of the crown:

  1. Make sure you're still in orthographic front view.
  2. Press  Ctrl + LMB  to create the first vertex.
  3. Press  Ctrl + LMB  to one side of that vertex to extrude another vertex, connected to the first by an edge.

(If this doesn't work, make sure you are in vertex select mode.)

Keep adding vertices until you're satisfied with the shape of your generatrix. You can always undo using  Ctrl + Z  or go back and adjust the positions of particular vertices using the grab tool.

The mesh is then spun around an axis perpendicular to the viewplane. You want to spin around a vertical axis, so press  Num7  to switch to top view.

Spinning the Hat

[edit | edit source]
The spun hat, drawn as wireframe in orthographic front view.

Now, let's actually spin the hat:

  1. Move the 3D cursor to the vertex you want to spin around by pressing  LMB  on it. You can also use the snapping tool for positioning the cursor more precisely by pressing  Shift+S  after selecting that specific vertex. Cursor to selected positions the cursor.
  2. Press  A  to select all the vertices. The Spin control only spins vertices that are selected.
  3. Press  Alt+R  to activate the Spin tool.
    • The Spin tool is also available in the Tool Shelf under Add
      If you spin the hat in front view, your hat will be flat. You have to spin the hat in top view.

You should now see 90° of a generatrix! To spin your hat all the way round, press  F6  or look in the Operator Panel just below the Tool Shelf. There should be an input slider named Angle, change this value from 90 to 360. There should also be a slider called Steps, increase the value from 9 to 15.

If your hat has a large hole in the center, you must have accidentally moved the 3D cursor away from the vertex you picked in step 1. Try again.

Remember that if you spin an object 360° there will be a double row of vertices at the row of vertices you spun. To fix this, press  A  to select all vertices, press  W  and select Remove Doubles. Note that this will only work in vertex select mode.

You may also want to merge the vertices at the top of the hat. Do this by selecting all the vertices at the top with  C  and pressing  Alt + M At Center. You may have to do this twice as some vertices might be beneath each other.

If ALT+R doesn't work
Note for AMD windows users that "Radeon Software" using  ALT+R  as default key for "Overlay Hotkey" which blocks key in Blender. You can change hotkey in "Radeon Software" preferences.
If the mouse pointer changes to a question-mark (?)...

You have more than one 3D View window, so Blender is asking which window to perform the spin in. Click  LMB  on the window that is showing top view.

Smoothing Your Hat

[edit | edit source]
The finished product!

You'll probably have noticed that normal hats aren't usually as faceted as yours! To change this, first press  Tab  to go back to Object mode then change the shading to Smooth (available on the Tool Shelf). If there are unexpected black marks, try recalculating the normals.

  1. Switch to Edit mode and open the Mesh menu in the 3D View Header.
  2. Normals → Recalculate Outside.

Next, add a Subsurf modifier to the hat and set the subdivisions to two, as you did in the "Detailing Your Simple Person 1" module.

  1. Click on the modifiers tab (wrench icon) in a Properties window.
  2. Add Modifier → Subdivision Surface.


Save your work. You'll need this scene for the next module.

Additional Resources

[edit | edit source]

Putting the Hat on the Person

[edit | edit source]

Once you're satisfied with the shapes of individual objects, you'll want to combine them into a coherent scene. You do this in Object Mode.

In this module, you'll learn how to move objects to and from layers. You'll also learn how to rename and parent objects, and you'll get an introduction to Outliner Windows.


You'll need the person-and-hat scene from the previous module. If you haven't done it, either go back and do it now or else download the pre-made model from Yosun Chang's website at http://www.nusoy.com/blender.

Adjusting an Object's Median Point

[edit | edit source]
The person that you (yeah you!) made with the origin in his geometric center.
  1. Load the person-and-hat scene.
  2. Make sure Blender is in Object Mode.
  3. Switch to Layer 2, select the hat and press  M . A dialog box will pop up for you to choose which layer to move it to. Either press 1 (the number on top of the keyboard, not the numberpad) or select the first box in the popup.
  4. Select the person you made earlier.

Just as you did in Edit Mode, you can specify the pivot for rotating and scaling objects in Object Mode. If you just finished the previous module, the pivot is probably set to "3D Cursor". If so, change it back to "Median Point".

In Edit Mode, the "Median Point" for pivoting is the geometric center of all selected vertices, edges, or faces. In Object Mode, however, it's the origin of the selected object's local coordinates, indicated by an orange dot. In other words, the origin might lie far from the object's geometric center.

You can use buttons in the Tools Shelf to reunify an object's origin with its geometric center:

  1. With Blender in Object Mode, click  LMB  on Set Origin in the Tool Shelf (under the "Edit" sub menu of Tools) and select Origin To Geometry (Blender 2.70: "Object" -> "Transform" -> "Origin to Geometry") to move the selected object's origin to its geometric center (without changing the object's appearance).
Note:

When more than one object is selected, Blender uses the average of their median points as the median point for pivoting.

This can be useful when you want a better picture of your object. With the origin set to the person's geometric center, you can now snap the object with  Shift+S  to the 3D cursor. This will let you view more of the model at one time and make for a faster editing workflow.

Positioning the Hat

[edit | edit source]
Positioning the hat

Once you have the hat properly oriented, move it into position on the person's head. The grab tool enables you to position objects in Object Mode in the same way you positioned vertices, edges, and faces in Edit Mode.

  1. Make sure Blender is in Object Mode.
  2. Click  RMB  on the hat object to select it.
  3. Activate the grab tool by pressing  G .

As you move the mouse pointer, the hat will move around in the viewport. By default, the movement plane is perpendicular to the view axis, so the hat will move differently depending on which viewpoint you're working in.

Just as in the Edit Mode grab tool, you can:

  • Restrict the direction of motion by pressing  X ,  Y , or  Z . Press once to move parallel to a global axis, twice to use a local axis. (Press the same key a third time to return to view-plane motion.)
  • To restrict motion to the global X-Y plane, lock the global Z by pressing  Shift + Z .
  • Hold down  Ctrl  to restrict motion to discrete steps (typically one Blender unit).
  • Hold down  Shift  to get finer control over the motion.
  • Click  LMB  or press  Enter  to finalize the position and exit the tool.
  • Click  RMB  or press  Esc  to return the object to its previous position and exit.

Use two different orthographic views to position the hat on the person's head. You will probably want to scale the hat to make it fit the person's head better. When you are doing this along the X or Y axis, make the changes symmetrical by specifying the axes you want scaling to be constrained to. This option is available in the Operator panel (just below the Tool Shelf) and also by pressing F6.

Parenting the Hat to the Person

[edit | edit source]
The parenting menu.

Once you have the hat properly sized and positioned on the person's head, you'll want it to stay there. In order to maintain such a cozy relationship between two objects, you'd have to remember to select them both before rotating, moving, or scaling. A drastic solution might be to join them into a single object using  Ctrl + J .

A better compromise is to Parent the hat to the person. Parenting creates a relationship between two objects, such that certain changes to one object (called the Parent object) automatically affect the other (called the Child object). Changes to the child, however, do not affect the parent.

Note that an object can have many children, but only one parent.

Since the person is bigger than the hat, it's logical to parent the hat to the person (meaning: parent = person, child = hat) instead of vice versa.

  1. Make sure Blender is in Object Mode.
  2. Click  RMB  on the hat object to select it.
  3. Click  Shift + RMB  on the person object.
    Both the person and the hat should now be selected. The order of selection is important here.
  4. Press  Ctrl + P  to parent the hat to the person.
  5. Select Object. The most recently selected object becomes the parent of all other selected objects.
Note:

Pressing  P  in the object mode instead of  Ctrl + P  will start the Blender game engine. To stop the game engine, press  Esc .

Now when you move the hat you will see a line from the hat to the person, indicating that the person is the hat's parent. And if you move the person, the hat will move with it.

You may get an error saying something like Loop to Parents, fix this by clearing all previous parents with  Alt + P .

Renaming Objects

[edit | edit source]
The renaming dialog

When you have multiple objects in a scene, it helps to give each one a name.

Click on the Objects tab in the Properties panel (the one with a box icon).

  1. Now select the hat by clicking  RMB  on it.
  2. At the very top of the tab you should see a dialog box with the name of your object
    • The hat's name might be something like "Circle" depending on which mesh primitive you first built the hat from.
  3. Click  LMB  on the dialog box and type in a more descriptive name like "Hat".

You have now changed the name of the hat's object datablock. This name change will be reflected in the Outliner, which we will look at shortly.

Now select your person by clicking  RMB  on it and repeat the process, changing the name to something like "Person".

Outliner Windows

[edit | edit source]
The Outliner window.

Once you give objects names, it helps to have a way to find objects by their name and parent. This is exactly what the Outliner is for and it comes in very handy when you are working with a large scene. The Outliner is usually just above the Properties panel. You may want to pull it down a bit to see it more clearly.

You'll notice that all the objects in your scene (Person, camera etc) are listed and that you can select these objects by clicking  LMB  on them. And if you click  RMB  on an object, a menu will pop up with options like Select, Deselect, Delete etc. If you select the Person and then click the "+" sign to its left, you will see that the Hat is listed below the person. This is because Blender lists all children objects beneath their parents.

On the right of each object there are a series of icons which represent the state of the object. For example, the eye icon means that your object is visible in the 3D viewport. You can turn off its visibility by clicking  LMB  on the eye, which will turn grey; click again on the eye to make it visible. If you hover the mouse over the icons a text box will pop up with a description of what that particular icon does.

Good on ya' mate!

[edit | edit source]

Congratulations!! You have now finished your simple character. Pat yourself on the back, and have a celebratory coffee! (Or pop!)

Additional Resources

[edit | edit source]

Materials and Textures

[edit | edit source]

In 3D graphics, materials and textures are nearly as important as shapes. Scenes would be boring if all the objects were gray.

The material system in Blender allows you to model a wide variety of materials and how they interact with light. The next few modules will introduce the available options.

Note:

Note that material and texture settings are renderer-specific. This page and the following ones describe settings appropriate to the Blender Internal renderer, which is the one selected by default when you open a new Blender document. Other renderers (both built into Blender and external) are available; you will learn about these later, in Advanced Rendering.

Material versus Texture

[edit | edit source]

A material defines the optical properties of an object: its color and whether it is dull or shiny. A texture is a pattern that breaks up the uniform appearance of the material. Very few objects in the real world have completely uniform surfaces. Instead most of them have patterning or variation in color: consider the grain in a piece of wood, the pile in a carpet, or the mortar in a brick wall.

Blender allows textures to influence materials in various ways, such as altering their colors. Multiple textures can interact with each other to produce interesting effects.

Note that textures have to be attached to materials to affect objects, you cannot apply a texture to an object without a material.

Other Material Settings

[edit | edit source]

Additional settings you can specify for a material include shaders, ray-tracing and halo.

Shaders determine how the appearance of a material varies with the angle of the light: diffuse shaders give a non-shiny look, while specular shaders give a mirror-like finish. Blender's material settings always involve both kinds of shaders, but you can adjust a material's diffuse and specular colours separately to control their respective effects; if you set the specular colour to black, the surface will no longer produce reflections.

Ray-tracing is a technique for modeling the physical path of light through the scene. It is capable of producing exquisite reflection and refraction effects, including different degrees of reflectivity, translucency and transparency, and representing materials with different indexes of refraction. Blender provides two separate groups of ray-tracing settings, one for reflection of light and the other for its transmission through the material. You can control these settings on a per-material basis.

Halo rendering means an object no longer looks like solid matter, instead it appears to be made of bits of light. This can be used for real-world effects like fire, smoke and plasma, or to create fantasy effects with no connection to reality.

Note that reflections produced by ray-tracing are separate from that produced by the specular shader: the former are controlled by the material's mirror colour, while the latter is controlled by its specular colour.

Reflection is done in two different ways because, while ray-tracing produces the most realistic renders, it is also very CPU-intensive. It is therefore best to apply the ray-tracing effects when you're completely done with your modelling to help reduce high CPU usage. Enough practice with ray-tracing can also help you get stunning effects with just few clicks without you having to do much trial and error. You would do well to dedicate at least a few hours of your time to experimenting with it, so that in a future real production situation, you will be spared all that hassle.

Types of Textures

[edit | edit source]

When you create a texture in Blender, you will see a popup menu listing a whole lot of different types for the texture. The Image or Movie texture type lets you use a scanned image to texture your object: for example, you can scan an actual piece of metal and use that to give your object a realistic metallic appearance, or use a photograph of an actual brick wall to texture the wall of a building model, and so on. You could even use a movie, which plays during the animation of the scene.

The other texture types are called procedural, which means the textures are generated according to algorithms built into Blender itself. These can be useful for simulating various effects when you don’t have an image of the real material handy; they can also be applied to augment the appearance in various ways. For example:

  • using a “cloud” texture to “dirty-up” a material
or
  • using one texture as a stencil to create an amalgam of two other textures.

Additional Resources

[edit | edit source]

Quickie Material

[edit | edit source]

In this module, you will create a new material called "Green Ooze". Along the way, you will learn how to alter the diffuse, specular, and mirror colors of a material.

Your First Material

[edit | edit source]
Figure 1: The Materials context in the Properties window.

The cube in the default scene (which you get from File → Load Factory Settings) has a simple grey color. Now click on the Materials context in the Properties window.

The materials context contains various menus, but for now you only need diffuse, specular and mirror. The material is named and linked in the panel above the preview window. (Linking is a feature that allows materials to be shared between multiple objects (or datablocks). Changing a material affects the appearance of everything it is linked to.)

The first row of the window above the preview window indicates that:

  • there is one material assigned to this object and its name is "Material".

The second row of controls indicates that:

  • The current selected material's name is "Material".
  • This material will only be saved if it's in use.
  • It is not a "Nodes" material.
  • Instead of being linked directly to an object, the current material is linked to a datablock.

To rename the material, click  LMB  on the name and enter the name you want.

To unlink the material, click  LMB  on the X button to the right of the material name ("Material"). Do this now. This deletes the link to the datablock, removing the material from the mesh. As a side-effect, most of the panels in the Material context disappear. You will see in a moment, however, that the material still exists. It hasn't been deleted; it is simply no longer in use.


At this point, you could click  LMB  the "New" button to create a new material, but instead we are going to reapply the old material:

  1. Click  LMB  on the button to the left of the "New" button.
  2. You'll see a nifty drop-down list containing all materials you've created so far. Choose 0 Material.

Materials whose names are preceded by "0" in this list are not in use. By default, Blender doesn't save such materials when it saves the scene. Thus, you can delete a material from the list by saving the scene and then reopening it. You can override this behavior by toggling the "F" button "on" for unused materials you want saved.


Your materials will be much easier to find and manage if you give them brief, descriptive names you can recognize at a glance. Change this one's name to "Green Ooze". In addition, naming of your materials and other objects in your scene is useful when such components of your scene will be appended in another scene of a different Blender file. Naming your materials and other stuff in the scene will enable you to choose the right objects and materials you need whenever you wish to append just a portion of a whole bunch of work you did. For instance, you're working on a new Blender project, but felt the material you used in this Blender file is worth it. Instead of going through the pain of creating a new material (of course you guessed in the initial one in getting the right material appearance), you just append the material to your new work. Pretty simple! Make naming a habit, as it's much used in a production environment.

Specifying Colors

[edit | edit source]

Simple materials are specified by three colors: diffuse, specular and mirror. Rectangular patches (swatches) of the colour in their own panel in the Material context allow you to see and change each of these. Diffuse color is the basic underlying color of the material, rendered by the diffuse shader. Specular color is for highlights (small bright spots on a shiny surface) as rendered by the specular shader. Mirror color is for true reflections rendered using ray-tracing.

There are many ways to define colours. Blender supports three:

  • RGB: By specifying relative amounts of red, green and blue primary colours, by giving a number from 0.0 to 1.0 for each component. For example, (R, G, B) = (0, 0, 0) specifies black (no colour at all); (0, 1, 0) is full green; (1, 1, 0) (full red + full green) is yellow; (0.5, 0.5, 0.5) is 50% grey, and (1, 1, 1) is full white (maximum intensity of all components). Note that this is additive mixing of colours, which is what happens when you shine lights of different colours onto a white screen, not the subtractive mixing that takes place when you mix different-coloured paints or inks on paper or canvas.
  • HSV: By specifying a hue (colour position on the rainbow) together with a saturation (strength of colour, from garish down to pastel, with zero giving shades of grey) and value (brightness). This is generally considered to be easier to use than RGB notation when you are trying to create new colours (as opposed to copying a colour spec from somewhere else), since it is easier to predict what the likely result will be. HSV is commonly represented on a colour wheel, where the hue is the angle around the circle, saturation the distance from the centre, and value controlled by a separate brightness slider (as shown below).
  • By specifying a 6-digit hexadecimal number. This is just an alternative form of RGB notation, commonly used for colour specifications in Web pages.
Figure 2: Blender’s colour picker popup

If you click on any colour swatch, the colour picker will pop up, allowing you to change the values. This is the most intuitive way. The window that appears will look like this and will include the following (Figure 2):

  1. A color wheel to change the color as you want. In HSV mode, H corresponds to angle around this wheel, while S corresponds to distance from the centre.
  2. Three color sliders that will change if you change the color in the colorwheel. You can also change the values with the sliders.
  3. A slider that controls the intensity of the color. This corresponds to the V in HSV.
  4. A pipette capable of sampling colors from any Blender window or render window.
  5. Buttons that can change it to "HSV" or "HEX" mode.
  • Alternatively you can specify hue, saturation and value components by clicking  LMB  on the "HSV" button and pushing the sliders around accordingly.
  • You can also press the last button and enter the hexadecimal (or HEX) code. This is simply a different representation for RGB, where the hex digits represent rrggbb.

HSV is probably the most easily understandable way of specifying and experimenting with colours. However, as is common with most computer systems, all colours in Blender are represented internally as RGB.

If you want to get rid of the window just click  LMB  anywhere else.

Note:

Duplicate intensity sliders? There are two ways to control the intensity of the colour: there is the vertical intensity slider at the right of the colour picker popup, and there are also the intensity fields at the bottom of the Diffuse and Specular panels (above), the final intensity being the combination of both values. Why two different ways?

Partly this is to allow a quick way to moderate or intensify the diffuse or specular components, without having to change the actual colour specification. But more importantly, this is to ensure that intensities are never set to 100%. The reason is that this can cause rendering calculation problems, leading to total light intensities accumulating to infinity instead of converging to a finite value. This is probably not a big issue with the Blender Internal renderer, but can become a problem with more advanced renderers.

The most used method of creating a color of your own is using the color wheel, but because we want to be sure you will get the exact same color as us we will use the sliders. Use the above methods to set the diffuse color to R=0.149, G=1.000, B=0.446 (or use the HEX code: 6CFFB2). If you look in the "Preview" panel, you will see that the material is now bright green.

Most real-life materials (other than metals) don't alter the color of specular light. For this reason, Specular and Mirror are usually left at their default values (white). For green ooze, however, you'll disregard this rule-of-thumb:

  1. Click  LMB  the sample rectangle below the Specular window.
  2. Use the color selection dialog to adjust the specular color and watch the Preview panel to see how this color affects the sample sphere's highlight.
  3. Set the specular color to R=0.640, G=0.990, B=0.566 (or use the HEX code: D1FEC6).

With these values for Color and Specular, you should be able to get a good ooze later on. The Preview, Diffuse and Specular panel should now look like this:

As you can see, there are many other material buttons. Many of these will be explained in later modules. Suggestions for creating specific materials may be found in the "Every Material Known to Man" module.

Save this scene before proceeding. You will need it for the "Quickie Texture" module, in which you will perfect your ooze.

Note:

Copying/Pasting Colours: Quite often, you will want to duplicate or move a colour specified in one place to another. If the two colour swatches are simultaneously visible, you can use the eyedropper button in the colour picker. But if they are not, then the easiest way is to bring up the colour picker for the colour you want to copy, switch to the hex display, select the 6 hex digits, and copy them with  CTRL + C . Then go to the colour you want to make the same, bring up its picker in hex mode, select the hex digits, and replace them with what you copied using  CTRL + V .

Additional Resources

[edit | edit source]

Multiple Materials Per Object

[edit | edit source]
The finished render.

In this module, you'll create a beach ball with two alternating colours. Along the way, you'll learn how to apply multiple materials to a single object.

Many real-life objects have parts which are different colours, or are even made of different materials. One way to model such objects is to make each part a separate Blender object. However, Blender also allows you to assign different materials to parts of a single object.

Set the Scene

[edit | edit source]

Begin by opening Blender and removing the default cube.

Now create a mesh for the beach ball:

  1. With the 3D View window active, press  Shift + A ) and choose Add → Mesh → UV Sphere.
  2. Expand the "Add UV Sphere" panel in the bottom left of the screen, then specify 8 segments and 4 rings.
    The initial result will be crude, but meshes with fewer vertices are easier to edit.

Make the mesh rounder and more organic using automatic subdivision:

  1. In the "Properties" editor, select the "Modifiers" context (wrench icon).
  2. Select "Add Modifier" and click Generate → Subdivision Surface.
  3. For the number of subdivisions, set both the 'View' and 'Render' count to 2.

Get rid of that blocky look:

  1. Ensure you're in Object Mode.
  2. Click the object button at the top of the viewport.
  3. Select "Shade Smooth" from the list of options.

The ball is now round, but a bit prolate. To make it more spherical, scale it by about 1.1 along the X and Y axes. To select the X-Y plane, you select ′not Z′, by using the key combination  Shift + Z . The complete sequence is, then,  S ,  Shift + Z ,  1.1 .

Colorize Time

[edit | edit source]

Now you're ready to begin adding colors to the object:

  1. Press  Tab  to put Blender into Edit mode.
  2. In the Properties editor, select the "Material" button .
  3. Press "+ New".
    A new material appears in the material slot list, and several additional panels appear below to edit the created material.
  4. In the "Surface" panel, click on the default white base color and change it to a nice yellow.
    At this point, the entire ball is yellow.

In the "Materials" panel click the "+" button (indicated by the red box in the picture, below) next to the material slot list to create a new blank slot. The "+ New" button will reappear (indicated by the blue box, in the picture below).

Click the "+ New" button and a new material will be created and assigned the empty slot in the materials slot list. Ensure that the new material is selected, then change the base color to blue. Nothing will happen to the beach ball, yet.

Now make a single blue stripe on the ball:

  1. All the vertices should still be selected from before; make sure the 3D view is active, then hit  Alt + A  to deselect them.
  2. Switch to front view with  NUM1 , and to "Face Select" mode by selecting the face select button. Which is to the left of the "view" button in the top left of the viewport.
  3. Select a column of four faces that will make up one stripe of the beach ball (using  SHIFT + LMB , or  SHIFT + RMB  depending on your selection key, on each face):
  4. In the "Material" property window, select the blue material slot in the list, then click the "Assign" button.

Rotate the view (e.g.  NUM6 ) so you can skip past a yellow stripe adjacent to the blue stripe, and select the second column that will become a blue stripe. Work your way around the ball to do this three more times. (Remember we made the sphere with 8 segments; four of these are yellow, and four are blue).

Now you see the benefit of making a sphere with only 4 rings: more rings would have meant more faces in each stripe, and more clicking to select them.

For help with rendering your beach ball, see our Noob to Pro/Render Settings and Noob to Pro/Quickie Render

Image Textures

[edit | edit source]

Image Texture Settings

[edit | edit source]
Simple checkerboard

To understand how the texture settings apply to image/movie textures, start with an example texture. A nice simple one is this checkerboard at right—don’t forget to download it in (or convert it to) PNG format, as Blender cannot use an SVG file as a texture.

Start a new Blender document. Note the default cube already has a a default grey material, called “Material”, and this already has a single texture, called “Tex”, of type “None”, which means it has no effect.

Note:

Before proceeding, go to the World context and turn on Environment Lighting (you can leave its default energy at 1.0). This will ensure the cube is more evenly lit, for easier visibility of the texture effect.

Under the Texture context of the Properties window, with Material Texture selected, change the texture type to “Image or Movie”. You will immediately see some new panels pop up in the texture context. Look for the Image panel, as at right. This initially contains a popup menu icon for selecting from any previously-loaded images (this will start out empty), a “New” button for using one of Blender’s predefined test textures, and an “Open” button for loading an image from a file.

Click the “Open” button, and select your previously-downloaded or converted PNG version of the example checkerboard texture.

Now a whole lot more settings will become visible. From the top, the panels are:

  • Preview — gives you a simple display of how the texture looks.
  • Colors — lets you make simple adjustments to the image brightness, contrast etc.
  • Image — lets you choose from any already-loaded images, and shows you the pathname of the file the image was loaded from. Note the two arrows in a circle to the right of the pathname display: clicking this will tell Blender to reload the image from the file, which is useful if you make changes to it in an external image editor.
  • Image Sampling — controls how the image can be interpreted in a different way from straight pixel values.
  • Image Mapping — lets you crop the input image, and apply fixed numbers of repetitions to it along each axis, even before it goes through the usual texture-tiling repetition process.
  • Mapping, Influence — these are more general panels that apply to all types of textures. They will be discussed in more detail shortly.
Note:

Image packing: the icon to the left of the image pathname lets you pack a complete copy of the image into the .blend file, so it no longer keeps reading the original image file. This can be useful if you want your .blend file to be self-contained, particularly if you want to send it to others. On the other hand, if your workflow depends on coordinating with someone else doing the image editing, it may be more convenient to leave it linking to a separate image file.

Projection: flat; axes: X→X, Y→Y, Z→Z

If you render  F12  now, you should end up with an image like this. Notice in the Projection menu (TextureMapping) the initial selection is “Flat”: this means that the texture X and Y coordinates go straight to object X and Y coordinates. Thus, the texture only appears on the top (and also bottom) of the cube, not on its sides. See also the three little popup menus just below the Projection menu, each containing the items X, Y and Z. These let you rearrange the object coordinates that the texture coordinates map to. If you change the first two, you can get the texture to appear on other pairs of sides of the cube, other than the top and bottom. The third menu (corresponding to the Z axis of the texture) has no effect (yet), because a flat image texture is only two-dimensional.

Texture size increased to 3.

Now try changing the three “Size” fields in the Mapping panel: give them all a value of 3. This will uniformly shrink the texture pattern to one-third of its original size. Or alternatively, it will require three times the number of texture repetitions to span the same distance as the original.

Texture projection set to Sphere

Now let’s try the other Projection types. Here’s what “Sphere” looks like. Imagine the texture pattern as a flat sheet stretched and curved around, and its edges joined to form a sphere surrounding the actual object; then the sphere is shrinkwrapped down onto the object.

Note the top and bottom edges of the sheet shrink down to single points at the north and south poles; this is why the squares of the checkerboard pattern turn into triangles next to these points.

Note:

Z-axis now works: because these projection types other than “Flat” turn the texture into a 3-dimensional object, you can now use all 3 of the axis-rearrangement menus to reorient the texture in interesting, not to say confusing, ways. What happens when you assign the same texture axis to more than one object axis?

Texture projection set to Tube

Here’s a Tube mapping. Here the texture pattern sheet is rolled round into a cylinder, with only one pair of edges joined together, the top and bottom left open.

Texture projection set to Cube

And lastly, here is a Cube mapping. Here 6 copies of the texture pattern are arranged parallel to the faces of a cube, before being shrinkwrapped onto the actual object. Which in this case, happens to be a cube.

Cube mappings are very commonly used in game engines, because they are just about the simplest way to wrap a texture around an entire object.

“Mapping” versus “Image Mapping”

Making Your Own Texture

[edit | edit source]

Procedural texturing is very powerful; however, sometimes it is difficult or impossible to generate the desired realism with them. Image texturing is there for you when you need it. To review, the basic idea is to take an outside image and wrap it around your model. You can use any texture, or a seamless one if you want it to repeat to get a tiled effect. The following shows how you create a seamless texture, and then how to apply any texture (seamless or otherwise) to an object.

The difference between 'tiled' and 'seamless'

[edit | edit source]

In many cases a simple material will just not cut it for an object, and you will want to apply a texture to it. However, depending on the object, you may want to apply either a seamless or tileable texture. A seamless texture is an image that will, when applied to an object, spread evenly across the surface of the object without any visible borders or 'seams' even if the object is many times larger than the resolution of the image (also called 'procedural textures' in Blender). These can be useful in many situations; such as when you want a texture for a carpet to seamlessly repeat itself without having a huge resolution.

A tileable texture on the other hand, is an image that will repeat itself across an object, but with noticeable seams. Any image can be used as a tileable texture, but often they will only be used in specific instances such as a vinyl floor with a tiled pattern on it.

See Using Textures for more details on applying images as textures, and using them to affect many other surface attributes such as luminosity, reflectivity, translucency, displacement etc.

How to make a tileable texture with the GIMP

[edit | edit source]

It is easy to create a tiling texture image with the GIMP. Start with the photo you want to use. Crop out any part you don’t want. Here’s an example random photo of some plants in my garden:

Go to Gimp’s “Filters” menu, and find the “Map” submenu. In here you will find the entry “Make Seamless”. Select it. That’s it:

Just to prove it works, here’s a (scaled-down) use of the result as a tiled fill pattern:

Other Image Texture Editors

[edit | edit source]
  • Wood Workshop A free utility (Requires Operating System: Windows 2000/XP) that generates surprisingly high quality tiling wood texture images. These textures can be exported as standard image files for use within Blender.
  • MapZone A free utility for Windows (works perfectly in Wine) that generates node based procedural texture maps. Mapzone can export diffuse, normal and alpha texture maps as standard image files. It can also import SVG regions created with Blender's UV mapping tools.

Procedural Textures

[edit | edit source]

Procedural Textures

Texturing objects can be broken down into two categories: procedural and image texturing. Procedural texturing makes use of mathematical formulas to generate textures. This is nice because it can be used to make relatively nice looking textures without external images which are very temperamental where you put them. Procedural Textures are all stored in the .blend file. These textures are obviously generated within Blender itself. Image texturing uses images created or captured outside of Blender, either from an image manipulation program such as the Paint.NET, GIMP or Photoshop, or captured on a camera. We have already learned about image texturing, so let's move on to procedural texturing.

Current Procedural Textures

Blender currently supports many procedural textures, including: Clouds, Marble, Stucci, Wood, Magic, Blend, Noise, Musgrave, Voronoi and DistortedNoise.

A Simple Wood Texture

[edit | edit source]

Let's define a simple wood texture:

  • Start a new Blender document containing the default cube.
  • Select the cube (and nothing else).
  • In the Properties window, go to the World tab and turn on Environment Lighting (you can leave its default energy at 1.0).
  • Go to the Materials tab , and rename the default "Material" to "Wood Material". Alternatively, delete the default material using the X to the right of the name field and add a new material.

Let's add some color and texture. You can see the results at any time by pressing F12 to re-render the scene.

Start by painting the cube a base color using the Wood Material's "diffuse" color:

  • In the “Material” tab,
  • Scroll down to the “Diffuse” properties panel and choose a darker brown color e.g. #A57E3F.

See http://en.wikipedia.org/wiki/HSL_and_HSV for where brown fits in the color wheel.

Next, let's add a texture to give the material some highlights.

  • Switch to the “Texture” properties tab , and again rename the default "Tex" to "Wood Texture" or create a new texture. Notice at the very top of the "Texture" tab "Cube > Wood Material > Wood Texture"
  • Change the Type of the material to “Wood” using the pop-up menu.

The texture sample will show parallel alternating black and white bars that don’t look very woody at all. Never fear! The black regions will be the material's base "diffuse" color. The white regions are like "highlights" that will be painted over the base.

Let's make some improvements to the texture:

  • While still in the “Textures” tab,
  • Scroll to the “Wood” properties panel that appears, change the waveform from “Sine” to “Saw”.
  • In the next row of buttons down, change the type from the default “Bands” to “Ring Noise”.
  • Increase the Noise Size to 1.0.

Now the texture sample should show something resembling wavy tree-rings. If you hit F12 to render now, you will see these rings covering your cube, except a) the colour is wrong, and b) normal wood patterns aren't so nearly circular.

To make the pattern more elongated:

  • Scroll to the “Mapping” properties panel,
  • Change the Size X value to 2.0 and Y to 0.4. This squishes the pattern down along the X-axis, and stretches it out along the Y-axis, giving the elliptical tree-ring shapes you commonly see on wood planks and boards.

Hit F12 to render again, and the shape of the texture should be looking a lot more woody now.

The final step is to color the highlights in the texture:

  • In the “Textures” tab,
  • Scroll to the “Influence” properties panel further down,
  • Click on the color swatch, and choose a nice brown colour.

For a nicer effect, I chose a very light brown e.g. #DEB887.

The result should look very woody indeed!

  • Remember that you need to Render to see the wood grain on your object.