User:Dirk Hünniger/latex

From Wikibooks, open books for an open world
Jump to navigation Jump to search
LaTeX



Contents

Introduction[edit]

What is TeX?[edit]

TeX is a language created by Donald Knuth to typeset documents attractively and consistently. Knuth started writing the TeX typesetting engine in 1977 to explore the potential of the digital printing equipment that was beginning to infiltrate the publishing industry at that time, in the hope that he could reverse the trend of deteriorating typographical quality that he saw affecting his own books and articles. While TeX is a programming language in the sense that it is Turing complete, its main job is that of a markup language for describing how your document should look. The fine control TeX offers over document structure and formatting makes it a powerful—and formidable—tool. TeX is renowned for being extremely stable, for running on many different kinds of computers, and for being virtually bug free. The version numbers of TeX are converging toward '"`UNIQ--postMath-00000001-QINU`"', with a current version number of 3.1415926.

The name TeX is intended by its developer to be /'tɛx/, /x/ being the velar fricative, the final consonant of loch and Bach. (Donald E. Knuth, The TeXbook) The letters of the name are meant to represent the capital Greek letters tau, epsilon, and chi, as TeX is an abbreviation of τέχνη (ΤΕΧΝΗ – technē), Greek for both "art" and "craft", which is also the root word of technical. English speakers often pronounce it /'tɛk/, like the first syllable of technical.

The tools TeX offers "out of the box" are relatively primitive, and learning how to perform common tasks can require a significant time investment. Fortunately, document preparation systems based on TeX, consisting of collections of pre-built commands and macros, do exist. These systems save time by automating certain repetitive tasks; however, this convenience comes at the cost of complete design flexibility. One of the most popular macro packages is called LaTeX.

What is LaTeX?[edit]

LaTeX (pronounced either "Lah-tech" or "Lay-tech") is a set of macros for TeX created by Leslie Lamport. Its purpose is to simplify TeX typesetting, especially for documents containing mathematical formulae. Within the typesetting system, its name is formatted as LaTeX.

In addition to the commands and options LaTeX offers, many other authors have contributed extensions, called packages or styles, which you can use for your documents. Many of these are bundled with most TeX/LaTeX software distributions; more can be found in the Comprehensive TeX Archive Network (CTAN).

Why should I use LaTeX?[edit]

Most readers will be familiar with WYSIWYG (What You See Is What You Get) typesetting systems such as LibreOffice Writer, Microsoft Word, or Google Docs. Using LaTeX is fundamentally different from using these other programs—instead of seeing your document as it comes together, you describe how you want it to look using commands in a text file, then run that file through the LaTeX program to build the result. While this has the disadvantage of needing to pause your work and take multiple steps to see what your document looks like, there are many advantages to using LaTeX:

  • You can concentrate purely on the structure and contents of the document. LaTeX will automatically ensure that the typography of your document—fonts, text sizes, line heights, and other layout considerations—are consistent according to the rules you set.
  • In LaTeX, the document structure is visible to the user, and can be easily copied to another document. In WYSIWYG applications it is often not obvious how a certain formatting was produced, and it might be impossible to copy it directly for use in another document.
  • Indexes, footnotes, citations and references are generated easily and automatically.
  • Mathematical formulae can be easily typeset. (Quality mathematics was one of the original motivations of TeX.)
  • Since the document source is plain text,
    • Document sources can be read and understood with any text editor, unlike the complex binary and XML formats used with WYSIWYG programs.
    • Tables, figures, equations, etc. can be generated programmatically with any language.
    • Changes can be easily tracked with version control software.
  • Some academic journals only accept or strongly recommend submissions in the form of LaTeX documents. Publishers offer LaTeX templates.

When the source file is processed by the LaTeX program, or engine, it can produce documents in several formats. LaTeX natively supports DVI and PDF, but by using other software you can easily create PostScript, PNG, JPEG, etc.

Terms regarding TeX[edit]

Document preparation systems

LaTeX is a document preparation system based on TeX. So the system is the combination of the language and the macros.

Distributions

TeX distributions are collections of packages and programs (compilers, fonts, and macro packages) that enable you to typeset without having to manually fetch files and configure things.

Engines

An engine is an executable that can turn your source code into a printable output format. The engine by itself only handles the syntax. It also needs to load fonts and macros to fully understand the source code and generate output properly. The engine will determine what kind of source code it can read, and what format it can output (usually DVI or PDF).

All in all, distributions are an easy way to install what you need to use the engines and the systems you want. Distributions usually target specific operating systems. You can use different systems on different engines, but sometimes there are restrictions. Code written for TeX, LaTeX or ConTeXt are (mostly) not compatible. Additionally, engine-specific code (like font for XeTeX) may not be compiled by every engine.

When searching for information on LaTeX, you might also stumble upon XeTeX, ConTeXt, LuaTeX or other names with a -TeX suffix. Let's recap most of the terms in this table.

Systems Descriptions
AMSTeX A legacy TeX macro-based document preparation system used by the American Mathematical Society (AMS) from 1982 to 1985. It evolved into the AMS-LaTeX collection which includes the amsmath package used in nearly every LaTeX document as well as mutliple AMS publication layout standards (document classes).
ConTeXt A TeX macro-based document preparation system designed by Hans Hagen and Ton Otten of Pragma ADE in the Netherlands around 1991. It is compatible with the pdfTeX, XeTeX and LuaTeX engines.

ConTeXt assumes the content author (writer of the document’s text) and the style author (designer of the document’s layout and appearance) are the same. It has a consistent and easy to understand syntax that provides the author with the tools and freedom necessary to produce a document with any desired layout. In cases where there are no standards to follow, ConTeXt provides creative freedom at the expense of required additional effort. ConTeXt excels at producing high-quality works with creative flair, such as textbooks and literature with artistically distinctive layouts.

LaTeX A TeX macro--based document preparation system designed by Leslie Lamport.

LaTeX assumes the content author and style author are different people. This allows authors (researchers, students, etc.) to concentrate on content and forget about design while allowing publishers (journals, graduate departments, etc.) to enforce institutional standards. Separation of content and design comes with the costs of package management, a less consistent syntax, and added complexity (compared to ConTeXt) if an author wishes to deviate from the layout designer's specification (documentclass). LaTeX excels at producing high-quality academic documents that conform to publication requirements, such as journal articles and theses.

MetaFont A high-quality font system designed by Donald Knuth along with TeX.
MetaPost A descriptive vector graphics language based on MetaFont.
TeX The original language designed by Donald Knuth.
Texinfo A TeX macro--based document preparation system designed by Richard Stallman that specializes in producing technical documentation (software manuals).
Engines Descriptions
xetex, xelatex a TeX engine which supports Unicode input and .ttf and .otf fonts. See Fonts.
luatex, lualatex A TeX engine with embedded Lua support, aiming at making TeX internals more flexible. Like XeTeX, supports Unicode input and modern font files.
pdftex, pdflatex Generates PDF output.
tex, latex The "original" TeX engine. Generates DVI output.
TeX Distributions Descriptions
MacTeX A TeX Live based distribution targetting Mac OS X.
MiKTeX A TeX distribution for Windows.
TeX Live A cross-platform TeX distribution.

What's next?[edit]

In the next chapter we discuss installing LaTeX on your system. Then we will typeset our first LaTeX file.

Learning more[edit]

One of the most frustrating things beginners and even advanced users might encounter using LaTeX is the difficulty of changing the look of your documents. While WYSIWYG programs make it trivial to change fonts and layouts, LaTeX requires you to learn new commands and packages to do so. Subsequent chapters will cover many common use cases, but know that this book is only scratching the surface.

Coming from a community of typography enthusiasts, most LaTeX packages contain excellent documentation. This should be your first step if you have questions—if a package's manual has not been installed on your machine as part of your TeX distribution, it can be found on CTAN.

Other useful resources include:

Installation[edit]

If this is the first time you are trying out LaTeX, you don't even need to install anything. For quick testing purpose you may just create a user account with an online LaTeX editor and continue this tutorial in the next chapter. These websites offer collaboration capabilities while allowing you to experiment with LaTeX syntax without having to bother with installing and configuring a distribution and an editor. When you later feel that you would benefit from having a standalone LaTeX installation, you can return to this chapter and follow the instructions below.

LaTeX is not a program by itself; it is a language. Using LaTeX requires a bunch of tools. Acquiring them manually would result in downloading and installing multiple programs in order to have a suitable computer system that can be used to create LaTeX output, such as PDFs. TeX Distributions help the user in this way, in that it is a single step installation process that provides (almost) everything.

At a minimum, you'll need a TeX distribution, a good text editor and a DVI or PDF viewer. More specifically, the basic requirement is to have a TeX compiler (which is used to generate output files from source), fonts, and the LaTeX macro set. Optional, and recommended installations include an attractive editor to write LaTeX source documents (this is probably where you will spend most of your time), and a bibliographic management program to manage references if you use them a lot.

Distributions[edit]

TeX and LaTeX are available for most computer platforms, since they were programmed to be very portable. They are most commonly installed using a distribution, such as teTeX, MiKTeX, or MacTeX. TeX distributions are collections of packages and programs (compilers, fonts, and macro packages) that enable you to typeset without having to manually fetch files and configure things. LaTeX is just a set of macro packages built for TeX.

The recommended distributions for each of the major operating systems are:

  • TeX Live is a major TeX distribution for *BSD, GNU/Linux, Mac OS X and Windows.
  • MiKTeX is a Windows-specific distribution.
  • MacTeX is a Mac OS-specific distribution based on TeX Live.

These, however, do not necessarily include an editor. You might be interested in other programs that are not part of the distribution, which will help you in writing and preparing TeX and LaTeX files.

*BSD and GNU/Linux[edit]

In the past, the most common distribution used to be teTeX. As of May 2006 teTeX is no longer actively maintained and its former maintainer Thomas Esser recommended TeX Live as the replacement.[1]

The easy way to get TeX Live is to use the package manager or portage tree coming with your operating system. Usually it comes as several packages, with some of them being essential, other optional. The core TeX Live packages should be around 200-300 MB.

If your *BSD or GNU/Linux distribution does not have the TeX Live packages, you should report a wish to the bug tracking system. In that case you will need to download TeX Live yourself and run the installer by hand.

You may wish to install the content of TeX Live more selectively. See below.

Mac OS X[edit]

Mac OS X users may use MacTeX, a TeX Live-based distribution supporting TeX, LaTeX, AMSTeX, ConTeXt, XeTeX and many other core packages. Download MacTeX.pkg on the MacTeX page, unzip it and follow the instructions. Further information for Mac OS X users can be found on the TeX on Mac OS X Wiki.

Since Mac OS X is also a Unix-based system, TeX Live is naturally available through MacPorts and Fink. Homebrew users should use the official MacTeX installer because of the unique directory structure used by TeX Live. Further information for Mac OS X users can be found on the TeX on Mac OS X Wiki.

Microsoft Windows[edit]

Microsoft Windows users can install MiKTeX onto their computer. It has an easy installer that takes care of setting up the environment and downloading core packages. This distribution has advanced features, such as automatic installation of packages, and simple interfaces to modify settings, such as default paper sizes.

There is also a port of TeX Live available for Windows.

Custom installation with TeX Live[edit]

This section targets users who want fine-grained control over their TeX distribution, like an installation with a minimum of disk space usage. If it is none of your concern, you may want to jump to the next section.

Picky users may wish to have more control over their installation. Common distributions might be tedious for the user caring about disk space. In fact, MikTeX and MacTeX and packaged TeX Live features hundreds of LaTeX packages, most of them which you will never use. Most Unix with a package manager will offer TeX Live as a set of several big packages, and you often have to install 300–400 MB for a functional system.

TeX Live features a manual installation with a lot of possible customizations. You can get the network installer at tug.org. This installer allows you to select precisely the packages you want to install. As a result, you may have everything you need for less than 100 MB. TeX Live is then managed through its own package manager, tlmgr. It will let you configure the distributions, install or remove extra packages and so on.

You will need a Unix-based operating system for the following. Mac OS X, GNU/Linux or *BSD are fine. It may work for Windows but the process must be quite different.

TeX Live groups features and packages into different concepts:

  • Collections are groups of packages that can always be installed individually, except for the Essential programs and files collection. You can install collections at any time.
  • Installation Schemes group collections and packages. Schemes can only be used at installation time. You can select only one scheme at a time.

Minimal installation[edit]

We will give you general guidelines to install a minimal TeX distribution (i.e., only for plain TeX).

  1. Download the installer at http://mirror.ctan.org/systems/texlive/tlnet/install-tl-unx.tar.gz and extract it to a temporary folder.
  2. Open a terminal in the extracted folder and log in as root.
  3. Change the umask permissions to 022 (user read/write/execute, group/others read/execute only) to make sure other users will have read-only access to the installed distribution.
# umask 022
  1. Launch install-tl.
  2. Select the minimal scheme (plain only).
  3. You may want to change the directory options. For example you may want to hide your personal macro folder which is located at TEXMFHOME. It is ~/texmf by default. Replace it by ~/.texmf to hide it.
  4. Now the options:
    1. use letter size instead of A4 by default: mostly for users from the USA.
    2. execution of restricted list of programs: it is recommended to select it for security reasons. Otherwise it allows the TeX engines to call any external program. You may still configure the list afterwards.
    3. create format files: targetting a minimal disk space, the best choice depends on whether there is only one user on the system, then deselecting it is better, otherwise select it. From the help menu: "If this option is set, format files are created for system-wide use by the installer. Otherwise they will be created automatically when needed. In the latter case format files are stored in user's directory trees and in some cases have to be re-created when new packages are installed."
    4. install font/macro doc tree: useful if you are a developer, but very space consuming. Turn it off if you want to save space.
    5. install font/macro source tree: same as above.
    6. Symlinks are fine by default, change it if you know what you are doing.
  5. Select portable installation if you install the distribution to an optical disc, or any kind of external media. Leave to default for a traditional installation on the system hard drive.

At this point it should display

1 collections out of 85, disk space required: 40 MB

or a similar space usage.

You can now proceed to installation: start installation to hard disk.

Don't forget to add the binaries to your PATH as it's noticed at the end of the installation procedure.

First test[edit]

In a terminal write

$ tex '\empty Hello world!\bye'
$ pdftex '\empty Hello world!\bye'

You should get a DVI or a PDF file accordingly.

Configuration[edit]

Formerly, TeX distributions used to be configured with the texconfig tool from the teTeX distribution. TeX Live still features this tool, but recommends using its own tool instead: tlmgr. Note that as of January 2013 not all texconfig features are implemented by tlmgr. Only use texconfig when you cannot do what you want with tlmgr.

List current installation options:

tlmgr option

You can change the install options:

tlmgr option srcfiles 1
tlmgr option docfiles 0
tlmgr paper letter

See the TLMGR(1) man page for more details on its usage. If you did not install the documents as told previously, you can still access the tlmgr man page with

tlmgr help

Installing LaTeX[edit]

Now we have a running plain TeX environment, let's install the base packages for LaTeX.

# tlmgr install latex latex-bin latexconfig latex-fonts

In this case you can omit latexconfig latex-fonts as they are auto-resolved dependencies to LaTeX. Note that tlmgr resolves some dependencies, but not all. You may need to install dependencies manually. Thankfully this is rarely too cumbersome.

Other interesting packages:

# tlmgr install amsmath babel carlisle ec geometry graphics hyperref lm  marvosym oberdiek parskip graphics-def url
amsmath The essentials for math typesetting.
babel Internationalization support.
carlisle Bundle package required for some babel features.
ec Required for T1 encoding.
geometry For page layout.
graphics The essentials to import graphics.
hyperref PDF bookmarks, PDF followable links, link style, TOC links, etc.
lm One of the best Computer Modern style font available for several font encodings (such as T1).
marvosym Several symbols, such as the official euro.
oberdiek Bundle package required for some geometry features.
parskip Let you configure paragraph breaks and indents properly.
graphics-def Required for some graphics features.
url Required for some hyperref features.

If you installed a package you do not need anymore, use

# tlmgr remove <package>

Hyphenation[edit]

If you are using Babel for non-English documents, you need to install the hyphenation patterns for every language you are going to use. They are all packaged individually. For instance, use

# tlmgr install hyphen-{finnish,sanskrit}

for finnish and sanskrit hyphenation patterns.

Note that if you have been using another TeX distribution beforehand, you may still have hyphenation cache stored in you home folder. You need to remove it so that the new packages are taken into account. The TeX Live cache is usually stored in the ~/.texliveYYYY folder (YYYY stands for the year). You may safely remove this folder as it contains only generated data. TeX compilers will re-generate the cache accordingly on next compilation.

Uninstallation[edit]

By default TeX Live will install in /usr/local/texlive. The distribution is quite proper as it will not write any file outside its folder, except for the cache (like font cache, hyphenation patters, etc.). By default,

  • the system cache goes in /var/lib/texmf;
  • the user cache goes in ~/.texliveYYYY.

Therefore TeX Live can be installed and uninstalled safely by removing the aforementioned folders.

Still, TeX Live provides a more convenient way to do this:

# tlmgr uninstall

You may still have to wipe out the folders if you put untracked files in them.

Editors[edit]

TeX and LaTeX source documents (as well as related files) are all text files, and can be opened and modified in almost any text editor. You should use a text editor (e.g. Notepad), not a word processor (Microsoft Word, LibreOffice Writer). Dedicated LaTeX editors are more useful than generic plain text editors, because they usually have autocompletion of commands, spell and error checking and handy macros.

Note

Microsoft Word can accept LaTeX through Equation Editor, but it is not a LaTeX editor.


Cross-platform[edit]

BaKoMa TeX[edit]

BaKoMa TeX is an editor for Windows and Mac OS with WYSIWYG-like features. It takes care of compiling the LaTeX source and updating it constantly to view changes to document almost in real time. You can take an evaluation copy for 28 days.

Emacs[edit]

Emacs is a general purpose, extensible text processing system. Advanced users can program it (in elisp) to make Emacs the best LaTeX environment that will fit their needs. In turn beginners may prefer using it in combination with AUCTeX and Reftex (extensions that may be installed into the Emacs program). Depending on your configuration, Emacs can provide a complete LaTeX editing environment with auto-completion, spell-checking, a complete set of keyboard shortcuts, table of contents view, document preview and many other features.

gedit-latex-plugin[edit]

Gedit with gedit-latex-plugin is also worth trying out for users of GNOME. GEdit is a cross-platform application for Windows, Mac, and Linux

Gummi[edit]

Screenshot of Gummi.

Gummi is a LaTeX editor for Linux, which compiles the output of pdflatex in realtime and shows it on the right half of the screen[2].

LyX[edit]

LyX1.6.3

LyX is a popular document preparation system for Windows, Linux and Mac OS. It provides a graphical interface to LaTeX, including several popular packages. It contains formula and table editors and shows visual clues of the final document on the screen enabling users to write LaTeX documents without worrying about the actual syntax. LyX calls this a What You See Is What You Mean (WYSIWYM) approach.[3]

LyX saves its documents in their own markup, and generates LaTeX code based on this. The user is mostly isolated from the LaTeX code and not in complete control of it, and as such LyX is not a normal LaTeX editor. However, as LaTeX is underlying system, knowledge of how that works is useful also for a LyX user. In addition, if one wants to do something that is not supported in the GUI, using LaTeX code may be required.

TeXmaker[edit]

TeXmaker is a cross-platform editor very similar to Kile in features and user interface. In addition it has its own PDF viewer.

TeXstudio[edit]

TeXstudio is a cross-platform open source LaTeX editor forked from Texmaker.

TeXworks[edit]

Screenshot of TeXworks on Ubuntu 12.10.

TeXworks is a dedicated TeX editor that is included in MiKTeX and TeX Live. It was developed with the idea that a simple interface is better than a cluttered one, and thus to make it easier for people in their early days with LaTeX to get to what they want to do: write their documents. TeXworks originally came about precisely because a math professor wanted his students to have a better initial experience with LaTeX.

You can install TeXworks with the package manager of your Linux distribution or choose it as an install option in the Windows or Mac installer.

Vim[edit]

Vim is another general purpose text editor for a wide variety of platforms including UNIX, Mac OS X and Windows. A variety of extensions exist including LaTeX Box and Vim-LaTeX.

*BSD and GNU/Linux-only[edit]

Kile[edit]

Screenshot of Kile.

Kile is a LaTeX editor for KDE (cross platform), providing a powerful GUI for editing multiple documents and compiling them with many different TeX compilers. Kile is based on Kate editor, has a quick access toolbar for symbols, document structure viewer, a console and customizable build options. Kile can be run in all operating systems that can run KDE.

LaTeXila[edit]

LaTeXila is another text editor for Linux (Gnome).

Mac OS X-only[edit]

TeXShop[edit]

TeXShop, the model for the TeXworks editor and previewer, is for Mac OS and is bundled with the MacTeX distribution. It uses multiple windows, one for editing the source, one for the preview, and one as a console for error messages. It offers one-click updating of the preview and allows easy crossfinding between the code and the preview by using CMD-click along with many features to make editing and typesetting TeX source easier.

TeXnicle[edit]

TeXnicle is a free editor for Mac OS that includes the ability to perform live updates. It includes a code library for the swift insertion of code and the ability to execute detailed word counts on documents. It also performs code highlighting and the editing window is customisable, permitting the user to select the font, colour, background colour of the editing environment. It is in active development.

Archimedes[edit]

Archimedes is an easy-to-use LaTeX and Markdown editor designed from the ground up for Mac OS X. It includes a built-in LaTeX library, code completion support, live previews, macro support, integration with sharing services, and PDF and HTML export options. Archimedes's Magic Type feature lets users insert mathematical symbols just by drawing them on their MacBook's trackpad or Magic Trackpad.

Texpad[edit]

Texpad is an integrated editor and viewer for Mac OS with a companion app for iOS devices. Similar to TeXShop, Texpad requires a working MacTeX distribution to function, however it can also support other distributions side-by-side with MacTex. It offers numerous features including templates, outline viewing, auto-completion, spell checking, customizable syntax highlighting, to-do list integration, code snippets, Markdown integration, multi-lingual support, and a Mac OS native user interface. Although Texpad offers a free evaluation period, the unlocked version is a paid download.

Windows-only[edit]

LEd[edit]

LEd

TeXnicCenter[edit]

TeXnicCenter is a popular free and open source LaTeX editor for Windows. It also has a similar user interface to TeXmaker and Kile.

WinEdt[edit]

WinEdt is a powerful and versatile text editor with strong predisposition towards creation of LaTeX/TeX documents for Windows. It has been designed and configured to integrate with TeX Systems such as MiTeX or TeX Live. Its built-in macro helps in compiling the LaTeX source to the WYSIWYG-like DVI or PDF or PS and also in exporting the document to other mark-up languages as HTML or XML.

WinShell[edit]

WinShell

Online solutions[edit]

To get started without needing to install anything, you can use a web-hosted service featuring a full TeX distribution and a web LaTeX editor.

  • Authorea is an integrated online framework for the creation of technical documents in collaboration. Authorea's frontend allows you to enter text in LaTeX or Markdown, as well as figures, and equations (in LaTeX or MathML). Authorea's versioning control system is entirely based on Git (every article is a Git repository).
  • CoCalc is a collaborative online workplace for computations, which also offers an editor for LaTeX documents.
  • Overleaf is a secure, easy to use online LaTeX editor with integrated rapid preview - like EtherPad for LaTeX. Start writing with one click (no signup required) and share the link. It supports real time preview, figures, bibliographies and custom styles. ShareLaTeX is now part of Overleaf.
  • SimpleLaTeX is an online editor and previewer for short LaTeX notes, which can be optionally cached or shared. Previews are available in SVG, PNG, and PDF. It also includes a simple GUI for editing tables.
  • Verbosus is a professional Online LaTeX Editor that supports collaboration with other users and is free to use. Merge conflicts can easily resolved by using a built-in merge tool that uses an implementation of the diff-algorithm to generate information required for a successful merge.

Bibliography management[edit]

Bibliography files (*.bib) are most easily edited and modified using a management system. These graphical user interfaces all feature a database form, where information is entered for each reference item, and the resulting text file can be used directly by BibTeX.

Cross-platform[edit]

Screenshot of JabRef.

Mac OS X-only[edit]

Screenshot of BibDesk
  • BibDesk is a bibliography manager based on a BibTeX file. It imports references from the internet and makes it easy to organize references using tags and categories[4].

Viewers[edit]

Finally, you will need a viewer for the files LaTeX outputs. Normally LaTeX saves the final document as a .dvi (Device independent file format), but you will rarely want it to. DVI files do not contain embedded fonts and many document viewers are unable to open them.

Usually you will use a LaTeX compiler like pdflatex to produce a PDF file directly, or a tool like dvi2pdf to convert the DVI file to PDF format. Then you can view the result with any PDF viewer.

Practically all LaTeX distributions have a DVI viewer for viewing the default output of latex, and also tools such as dvi2pdf for converting the result automatically to PDF and PS formats.

Here follows a list of various PDF viewers.

Tables and graphics tools[edit]

LaTeX is a document preparation system, it does not aim at being a spreadsheet tool nor a vector graphics tool.

If LaTeX can render beautiful tables in a dynamic and flexible manner, it will not handle the handy features you could get with a spreadsheet like dynamic cells and calculus. Other tools are better at that. The ideal solution is to combine the strength of both tools: build your dynamic table with a spreadsheet, and export it to LaTeX to get a beautiful table seamlessly integrated to your document. See Tables for more details.

The graphics topic is a bit different since it is possible to write procedural graphics from within your LaTeX document. Procedural graphics produce state-of-the-art results that integrates perfectly to LaTeX (e.g. no font change), but have a steep learning curve and require a lot of time to draw.

For easier and quicker drawings, you may want to use a WYSIWYG tool and export the result to a vector format like PDF. The drawback is that it will contrast in style with the rest of your document (font, size, etc.). Some tools have the capability to export to LaTeX, which will partially solve this issue. See Importing Graphics for more details.

References[edit]

  1. teTeX Home Page (Retrieved January 31, 2007)
  2. Gummi
  3. LyX
  4. BibDesk

Installing Extra Packages[edit]

Add-on features for LaTeX are known as packages. Dozens of these are pre-installed with LaTeX and can be used in your documents immediately. They should all be stored in subdirectories of texmf/tex/latex named after each package. The directory name "texmf" stands for “TEX and METAFONT”. To find out what other packages are available and what they do, you should use the CTAN search page which includes a link to Graham Williams' comprehensive package catalogue.

A package is a file or collection of files containing extra LaTeX commands and programming which add new styling features or modify those already existing. There are two main file types: class files with .cls extension, and style files with .sty extension. There may be ancillary files as well. When you try to typeset a document which requires a package which is not installed on your system, LaTeX will warn you with an error message that it is missing. You can download updates to packages you already have (both the ones that were installed along with your version of LaTeX as well as ones you added). There is no limit to the number of packages you can have installed on your computer (apart from disk space!), but there is a configurable limit to the number that can be used inside any one LaTeX document at the same time, although it depends on how big each package is. In practice there is no problem in having even a couple of dozen packages active.

Most LaTeX installations come with a large set of pre-installed style packages, so you can use the package manager of the TeX distribution or the one on your system to manage them. See the automatic installation. But many more are available on the net. The main place to look for style packages on the Internet is CTAN. Once you have identified a package you need that is not in your distribution, use the indexes on any CTAN server to find the package you need and the directory where it can be downloaded from. See the manual installation.

Automatic installation[edit]

If on an operating system with a package manager or a portage tree, you can often find packages in repositories.

With MikTeX there is a package manager that allows you to pick the package you want individually. As a convenient feature, upon the compilation of a file requiring non-installed packages, MikTeX will automatically prompt to install the missing ones.

With TeX Live, it is common to have the distribution packed into a few big packages. For example, to install something related to internationalization, you might have to install a package like texlive-lang. With TeX Live manually installed, use tlmgr to manage packages individually.

tlmgr install <package1> <package2> ...
tlmgr remove <package1> <package2> ...

The use of tlmgr is covered in the Installation chapter.

If you cannot find the wanted package with any of the previous methods, see the manual installation.

Instructions for specific operating systems[edit]

On Ubuntu, with releases such as Trusty, you can use texlive and texlive-extra packages, e.g. texlive-full, texlive-latex-extra, texlive-math-extra, texlive-plain-extra, texlive-bibtex-extra, texlive-generic-extra, and language packages, which are all available here on the Ubuntu packages site, as well as here for Trusty updates. You can install these packages with sudo apt-get <insert package name here>.

Manual installation[edit]

Downloading packages[edit]

What you need to look for is usually two files, one ending in .dtx and the other in .ins. The first is a DOCTeX file, which combines the package program and its documentation in a single file. The second is the installation routine (much smaller). You must always download both files. If the two files are not there, it means one of two things:

  • Either the package is part of a much larger bundle which you shouldn't normally update unless you change User:Dirk Hünniger/latex version of LaTeX;
  • or it's an older or relatively simple package written by an author who did not use a .dtx file.

Download the package files to a temporary directory. There will often be a readme.txt with a brief description of the package. You should of course read this file first.

Installing a package[edit]

There are five steps to installing a LaTeX package. (These steps can also be used on the pieces of a complicated package you wrote yourself; in this case, skip straight to Step 3.)

1. Extract the files Run LaTeX on the .ins file. That is, open the file in your editor and process it as if it were a LaTeX document (which it is), or if you prefer, type latex followed by the .ins filename in a command window in your temporary directory. This will extract all the files needed from the .dtx file (which is why you must have both of them present in the temporary directory). Note down or print the names of the files created if there are a lot of them (read the log file if you want to see their names again).

2. Create the documentation Run LaTeX on the .dtx file. You might need to run it twice or more, to get the cross-references right (just like any other LaTeX document). This will create a .dvi file of documentation explaining what the package is for and how to use it. If you prefer to create PDF then run pdfLaTeX instead. If you created a .idx as well, it means that the document contains an index, too. If you want the index to be created properly, follow the steps in the indexing section. Sometimes you will see that a .glo (glossary) file has been produced. Run the following command instead:

makeindex -s gglo.ist -o name.gls name.glo

3. Install the files While the documentation is printing, move or copy the package files from your temporary directory to the right place[s] in your TeX local installation directory tree. Packages installed by hand should always be placed in your "local" directory tree, not in the directory tree containing all the pre-installed packages. This is done to a) prevent your new package accidentally overwriting files in the main TeX directories; and b) avoid your newly-installed files being overwritten when you next update your version of TeX.

For a TDS(TeX Directory Structure)-conformant system, your "local installation directory tree" is a folder and its subfolders. The outermost folder should probably be called texmf-local/ or texmf/. Its location depends on your system:

The "right place" sometimes causes confusion, especially if your TeX installation is old or does not conform to the TeX Directory Structure(TDS). For a TDS-conformant system, the "right place" for a LaTeX .sty file is a suitably-named subdirectory of texmf/tex/latex/. "Suitably-named" means sensible and meaningful (and probably short). For a package like paralist, for example, I'd call the directory texmf/tex/latex/paralist.

Often there is just a .sty file to move, but in the case of complex packages there may be more, and they may belong in different locations. For example, new BibTeX packages or font packages will typically have several files to install. This is why it is a good idea to create a sub-directory for the package rather than dump the files into misc along with other unrelated stuff. If there are configuration or other files, read the documentation to find out if there is a special or preferred location to move them to.

Where to put files from packages
Type Directory (under texmf/ or texmf-local/) Description
.afm fonts/afm/foundry/typeface Adobe Font Metrics for Type 1 fonts
.bib bibtex/bib/bibliography BibTeX bibliography
.bst bibtex/bst/packagename BibTeX style
.cls tex/latex/base Document class file
.dvi doc package documentation
.enc fonts/enc Font encoding
.fd tex/latex/mfnfss Font Definition files for METAFONT fonts
.fd tex/latex/psnfss Font Definition files for PostScript Type 1 fonts
.map fonts/map Font mapping files
.mf fonts/source/public/typeface METAFONT outline
.pdf doc package documentation
.pfb fonts/type1/foundry/typeface PostScript Type 1 outline
.sty tex/latex/packagename Style file: the normal package content
.tex doc TeX source for package documentation
.tex tex/plain/packagename Plain TeX macro files
.tfm fonts/tfm/foundry/typeface TeX Font Metrics for METAFONT and Type 1 fonts
.ttf fonts/truetype/foundry/typeface TrueType font
.vf fonts/vf/foundry/typeface TeX virtual fonts
others tex/latex/packagename other types of file unless instructed otherwise

For most fonts on CTAN, the foundry is public.

4. Update your index Finally, run your TeX indexer program to update the package database. This program comes with every modern version of TeX and has various names depending on the LaTeX distribution you use. (Read the documentation that came with your installation to find out which it is, or consult http://www.tug.org/fonts/fontinstall.html#fndb):

  • teTeX, TeX Live, fpTeX: texhash
  • web2c: mktexlsr
  • MacTeX: MacTeX appears to do this for you.
  • MikTeX: initexmf --update-fndb (or use the GUI)
  • MiKTeX 2.7 or later versions, installed on Windows XP through Windows 7: Start -> All Programs -> MikTex -> Settings. In Windows 8 use the keyword Settings and choose the option of Settings with the MiKTex logo. In Settings menu choose the first tab and click on Refresh FNDB-button (MikTex will then check the Program Files directory and update the list of File Name DataBase). After that just verify by clicking 'OK'.

5. Update font maps If your package installed any TrueType or Type 1 fonts, you need to update the font mapping files in addition to updating the index. Your package author should have included a .map file for the fonts. The map updating program is usually some variant on updmap, depending on your distribution:

  • TeX Live and MacTeX: updmap --enable Map=mapfile.map (if you installed the files in a personal tree) or updmap-sys --enable Map=mapfile.map (if you installed the files in a system directory).
  • MikTeX: Run initexmf --edit-config-file updmap, add the line "Map mapfile.map to the file that opens, then run initexmf --mkmaps.

See http://www.tug.org/fonts/fontinstall.html.

The reason this process has not been automated widely is that there are still thousands of installations which do not conform to the TDS, such as old shared Unix systems and some Microsoft Windows systems, so there is no way for an installation program to guess where to put the files: you have to know this. There are also systems where the owner, user, or installer has chosen not to follow the recommended TDS directory structure, or is unable to do so for political or security reasons (such as a shared system where the user cannot write to a protected directory). The reason for having the texmf-local directory (called texmf.local on some systems) is to provide a place for local modifications or personal updates, especially if you are a user on a shared or managed system (Unix, Linux, VMS, Windows NT/2000/XP, etc.) where you may not have write-access to the main TeX installation directory tree. You can also have a personal texmf subdirectory in your own login directory. Your installation must be configured to look in these directories first, however, so that any updates to standard packages will be found there before the superseded copies in the main texmf tree. All modern TeX installations should do this anyway, but if not, you can edit texmf/web2c/texmf.cnf yourself.

Checking package status[edit]

The universal way to check if a file is available to TeX compilers is the command-line tool kpsewhich.

$ kpsewhich tikz
/usr/local/texlive/2012/texmf-dist/tex/plain/pgf/frontendlayer/tikz.tex

kpsewhich will actually search for files only, not for packages. It returns the path to the file. For more details on a specific package use the command-line tool tlmgr (TeX Live only):

tlmgr info <package>

The tlmgr tool has lot more options. To consult the documentation:

tlmgr help

Package documentation[edit]

To find out what commands a package provides (and thus how to use it), you need to read the documentation. In the texmf/doc subdirectory of your installation there should be directories full of .dvi files, one for every package installed. This location is distribution-specific, but is typically found in:

Distribution Path
MacTeX /Library/TeX/Documentation/texmf-doc/latex
MiKTeX %MIKTEX_DIR%\doc\latex
TeX Live $TEXMFDIST/doc/latex

Generally, most of the packages are in the latex subdirectory, although other packages (such as BibTeX and font packages) are found in other subdirectories in doc. The documentation directories have the same name of the package (e.g. amsmath), which generally have one or more relevant documents in a variety of formats (dvi, txt, pdf, etc.). The documents generally have the same name as the package, but there are exceptions (for example, the documentation for amsmath is found at latex/amsmath/amsdoc.dvi). If your installation procedure has not installed the documentation, the DVI files can all be downloaded from CTAN. Before using a package, you should read the documentation carefully, especially the subsection usually called "User Interface", which describes the commands the package makes available. You cannot just guess and hope it will work: you have to read it and find out.

You can usually automatically open any installed package documentation with the texdoc command:

texdoc <package-name>

External resources[edit]

The best way to look for LaTeX packages is the already mentioned CTAN: Search. Additional resources form The TeX Catalogue Online:

See Also[edit]

Basics[edit]

This tutorial is aimed at getting familiar with the bare bones of LaTeX.

Before starting, ensure you have LaTeX installed on your computer (see Installation for instructions of what you will need).

  • We will first have a look at the LaTeX syntax.
  • We will create our first LaTeX document.
  • Then we will take you through how to feed this file through the LaTeX system to produce quality output, such as postscript or PDF.
  • Finally we will have a look at the file names and types.

The LaTeX syntax[edit]

When using LaTeX, you write a plain text file which describes the document's structure and presentation. LaTeX converts this source text, combined with markup, into a typeset document. For the purpose of analogy, web pages work in a similar way: HTML is used to describe the document, which is then rendered into on-screen output - with different colours, fonts, sizes, etc. - by your browser.

You can create an input file for LaTeX with any text editor. A minimal example looks something like the following (the commands will be explained later):

\documentclass{article}

\begin{document}
Hello world!
\end{document}

Spaces[edit]

LaTeX normalises spaces in its input files so that whitespace characters, such as a space or a tab, are treated uniformly as space. Several consecutive spaces are treated as one, space opening a line is generally ignored, and a single line break also yields space. More line breaks (empty lines) define the end of a paragraph. An example of applying these rules is presented below: the left-hand side shows the user's input (.tex), while the right-hand side depicts the rendered output (.dvi, .pdf, .ps).

It does not matter whether you
enter one or several             spaces
after a word.

An empty line starts a new
paragraph.

It does not matter whether you enter one or several spaces after a word.

An empty line starts a new paragraph.

Reserved Characters[edit]

The following symbols are reserved characters that either have a special meaning under LaTeX or are unavailable in all the fonts. If you enter them directly in your text, they will normally not print but rather make LaTeX do things you did not intend.

# $ % ^ & _ { } ~ \

As you will see, these characters can be used in your documents all the same by adding a prefix backslash:

\# \$ \% \^{} \& \_ \{ \} \~{} \textbackslash{}

In some circumstances, the square bracket characters [ ] can also be considered as reserved characters, as they are used to give optional parameters to some commands. If you want to print these directly after some command, like in this situation: \command [text] it will fail, as [text] will be considered as an option given to \command. You can achieve the correct output this way: \command {} [text].

The backslash character \ cannot be entered by adding another backslash in front of it, like so \\; this sequence is used for line breaking. For introducing a backslash in math mode, you can use \backslash instead.

The commands \~ and \^ produce respectively a tilde and a hat which is placed over the next letter. For example \~n gives ñ. That's why you need braces to specify there is no letter as argument. You can also use \textasciitilde and \textasciicircum to enter these characters; or other commands .

If you want to insert text that might contain several particular symbols (such as URIs), you can consider using the \verb command, which will be discussed later in the section on formatting. For source code, see Source Code Listings

The less-than < and greater-than > characters are the only visible ASCII characters (not reserved) that will not print correctly. See Special Characters for an explanation and a workaround.

Non-ASCII characters (e.g. accents, diacritics) can be typed in directly for most cases. However you must configure the document appropriately. The other symbols and many more can be printed with special commands as in mathematical formulae or as accents. We will tackle this issue in Special Characters.

LaTeX groups[edit]

Sometimes a certain state should be kept local, in other words its scope should be limited. This can be done by enclosing the part to be changed locally in curly braces. In certain occasions, using braces won't be possible. LaTeX provides \bgroup and \egroup to begin and end a group, respectively.

\documentclass{article}
\begin{document}
normal text {\itshape walzing \bfseries Wombat} more normal text

normal text \bgroup\itshape walzing \bfseries Wombat\egroup{} more normal text
\end{document}

Environments form an implicit group.

LaTeX environments[edit]

Environments in LaTeX have a role that is quite similar to commands, but they usually have effect on a wider part of the document. Their syntax is:

\begin{environmentname}
text to be influenced
\end{environmentname}

Between the \begin and the \end you can put other commands and nested environments. The internal mechanism of environments defines a group, which makes its usage safe (no influence on the other parts of the document). In general, environments can accept arguments as well, but this feature is not commonly used and so it will be discussed in more advanced parts of the document.

Anything in LaTeX can be expressed in terms of commands and environments.

LaTeX commands[edit]

LaTeX commands are case sensitive, and take one of the following two formats:

  1. They start with a backslash \ and then have a name consisting of letters only.
    • Command names are terminated by a space, a number or any other non-letter.
  2. They consist of a backslash \ and exactly one non-letter.
    • Command names are terminated after that one non-letter.

Some commands need an argument, which has to be given between curly braces { } after the command name. Some commands support optional parameters, which are added after the command name in square brackets [ ]. The general syntax is:

\commandname[option1,option2,...]{argument1}{argument2}...

Most standard LaTeX commands have a switch equivalent. Switches have no arguments, but apply on the rest of the scope, in other words the current group or environment. A switch should almost never be called outside of any scope, otherwise it will apply on the rest of the document.

Example:

% \emph is a command with argument, \em is a switch.
\emph{emphasized text}, this part is normal % Correct.
{\em emphasized text}, this part is normal  % Correct.

\emph emphasized text, this part is normal  % Incorrect: command without argument.
\em{emphasized text}, this part is normal   % Incorrect: switch with argument.
\em emphasized text, this part is normal    % Dangerous: switch outside of any environment.

Comments[edit]

When LaTeX encounters a % character while processing an input file, it ignores the rest of the current line, the line break, and all whitespace at the beginning of the next line.

This can be used to write notes into the input file, which will not show up in the printed version.

This is an % stupid
% Better: instructive <----
example: Supercal%
            ifragilist%
icexpialidocious

This is an example: Supercalifragilisticexpialidocious

Note that the % character can be used to split long input lines that do not allow whitespace or line breaks, as with Supercalifragilisticexpialidocious above.

The core LaTeX language does not have a predefined syntax for commenting out regions spanning multiple lines. Refer to multiline comments for simple workarounds.

Our first document[edit]

Now we can create our first document. We will produce the absolute bare minimum that is needed in order to get some output; the well known Hello World! approach will be suitable here.

  • Open your favorite text-editor. vim, emacs, Notepad++, and other text editors will have syntax highlighting that will help to write your files.
  • Reproduce the following text in your editor. This is the LaTeX source.
% hello.tex - Our first LaTeX example!
\documentclass{article}
\begin{document}
Hello World!
\end{document}
  • Save your file as hello.tex.

When picking a name for your file, make sure it bears a .tex extension.

What does it all mean?[edit]

% hello.tex - Our first LaTeX example! The first line is a comment. This is because it begins with the percent symbol (%); when LaTeX sees this, it simply ignores the rest of the line. Comments are useful for people to annotate parts of the source file. For example, you could put information about the author and the date, or whatever you wish.
\documentclass{article} This line is a command and tells LaTeX to use the article document class. A document class file defines the formatting standard to follow, which in this case is the generic article format. Journals, university departments, etc. can provide these files to ensure publication standards are met. In many instances, the same document content can be reformatted for submission to a different publisher simply by substituting the required document class file. There are numerous generic document classes available to choose from if one is not provided.
\begin{document} This line is the beginning of the environment called document; it alerts LaTeX that content of the document is about to commence. Anything above this command is known generally to belong in the preamble.
Hello World! This was the only actual line containing real content - the text that we wanted displayed on the page.
\end{document} The document environment ends here. It tells LaTeX that the document source is complete, anything after this line will be ignored.

As we have said before, each of the LaTeX commands begins with a backslash (\). This is LaTeX's way of knowing that whenever it sees a backslash, to expect some commands. Comments are not classed as a command, since all they tell LaTeX is to ignore the line. Comments never affect the output of the document, provided there is no white space before the percent sign.

Building a document[edit]

We then feed our input file into a LaTeX engine, a program which generates our final document.

There are several LaTeX engines in modern use: lualatex, xelatex, and pdflatex. There are important differences between the three, but we'll discuss those elsewhere - any of them will work for building our first document.

Generating the document[edit]

LaTeX itself does not have a GUI, though some LaTeX installations feature a graphical front-end where you can click LaTeX into compiling your input file. Assuming you're not using one of those:

  1. Open a terminal and navigate to the directory containing your .tex file.
  2. Type the command: xelatex hello.tex (The .tex extension is not required, although you can include it if you wish.)
  3. Various bits of info about LaTeX and its progress will be displayed. If all went well, the last two lines displayed in the console will be:
Output written on hello.pdf (1 page).
Transcript written on hello.log.

This means that your source file has been processed and the resulting document is called hello.pdf. You can view it with any PDF viewer installed on your system.

In this instance, due to the simplicity of the file, you only need to run the LaTeX command once. However, if you begin to create complex documents, including bibliographies and cross-references, etc., LaTeX needs to be executed multiple times to resolve the references. This will be discussed in the future when it comes up.

Autobuild Systems[edit]

Compiling can be quite tricky as soon as you start working on more complex documents. A number of programs exist to automatically read in a LaTeX document and run the appropriate compilers the appropriate number of times. For example, latexmk can generate a PDF from most LaTeX files simply:

$ latexmk -pdf file.tex

Note that most editors will take care of it for you.

Historical versions of LaTeX[edit]

Both LaTeX and TeX were created many years before the Portable Document Format (PDF) existed, so the plain LaTeX engine, latex, emits DVI, a format designed by Donald Knuth for device-independent TeX output. This format has fallen out of general use, but can be converted into more common output formats using programs from your LaTeX distribution:

  • dvips converts .dvi files to .ps (PostScript).
  • dvipdf converts .dvi files to .pdf (dvipdfm is an improved version).

You might also find Ghostscript, a set of free and open-source tools for working with PostScript, useful. Its ps2pdf converts .ps files to .pdf, and pdf2ps does the reverse.

The following diagram shows the relationships between the LaTeX source code and the formats you can create from it:

LaTeX diagram.svg

The boxed red text represents the file formats, the blue text on the arrows represents the commands you have to use, the small dark green text under the boxes represents the image formats that are supported. Any time you pass through an arrow you lose some information, which might decrease the features of your document. Therefore, you should choose the shortest route to reach your target format. This is probably the most convenient way to obtain an output in your desired format anyway. Starting from a LaTeX source, the best way is to use only latex for a DVI output, or only pdflatex for a PDF output, converting to PostScript only when it is necessary to print the document.

Note that using latex to generate DVI output keeps you from using PDF-only features, such as hyperlinks and embedded fonts.

Chapter Export To Other Formats discusses more about exporting LaTeX source to other file formats.

Files[edit]

Picking suitable filenames[edit]

Never, ever use directories (folders) or file names that contain spaces. Although your operating system probably supports them, some don't, and they will only cause grief and tears with TeX. Make filenames as short or as long as you wish, but strictly avoid spaces. Stick to lower-case letters without accents a-z, the digits 0-9, the hyphen (-), and only one full point or period (.) to separate the file extension (somewhat similar to the conventions for a good Web URL): it will let you refer to TeX files over the Web more easily and make your files more portable. Some operating systems do not distinguish between upper-case and lower-case letters, others do. Therefore it's best not to mix them.

Ancillary files[edit]

The TeX compilers are single-pass processes. It means that there is no way for a compiler to jump around the document, which would be useful for the table of contents and references. Indeed the compiler cannot guess at which page a specific section is going to be printed, so when the table of contents is printed before the upcoming sections, it cannot set the page numbers.

To circumvent this issue, many LaTeX commands which need to jump use ancillary files which usually have the same file name as the current document but a different extension. It stores temporary data into these files and use them for the next compilation. So to have an up-to-date table of contents, you need to compile the document twice. There is no need to re-compile if no section moved.

For example, the temporary file for the table of contents data is filename.toc.

None of these files contains unrecoverable information. It means you can delete them safely, compiling will regenerate them automatically.

When you work with various capabilities of LaTeX (index, glossaries, bibliographies, etc.) you will soon find yourself in a maze of files with various extensions and probably no clue. The following list explains the most common file types you might encounter when working with TeX:

Common file extensions in LaTeX
.aux A file that transports information from one compiler run to the next. Among other things, the .aux file is used to store information associated with cross-references.
.bbl Bibliography file output by BiBTeX and used by LaTeX
.bib Bibliography database file. (where you can store a list of full bibliographic citations)
.blg BiBTeX log file. (errors are logged here)
.bst BiBTeX style file.
.cls Class files define what your document looks like. They are selected with the \documentclass command.
.dtx Documented TeX. This is the main distribution format for LaTeX style files. If you process a .dtx file you get documented macro code of the LaTeX package contained in the .dtx file.
.ins The installer for the files contained in the matching .dtx file. If you download a LaTeX package from the net, you will normally get a .dtx and a .ins file. Run LaTeX on the .ins file to unpack the .dtx file.
.fd Font description file telling LaTeX about new fonts.
.dvi Device Independent File. This is the main result of a LaTeX compile run with latex. You can look at its content with a DVI previewer program or you can send it to a printer with dvips or a similar application.
.pdf Portable Document Format. This is the main result of a LaTeX compile run with pdflatex. You can look at its content or print it with any PDF viewer.
.log Gives a detailed account of what happened during the last compiler run.
.toc Stores all your section headers. It gets read in for the next compiler run and is used to produce the table of contents.
.lof This is like .toc but for the list of figures.
.lot And again the same for the list of tables.
.idx If your document contains an index. LaTeX stores all the words that go into the index in this file. Process this file with makeindex.
.ind The processed .idx file, ready for inclusion into your document on the next compile cycle.
.ilg Logfile telling what makeindex did.
.sty LaTeX Macro package. This is a file you can load into your LaTeX document using the \usepackage command.
.tex LaTeX or TeX input file. It can be compiled with latex.
.out hyperref package file, just one for the master file.

And what now?[edit]

Common Elements[edit]

See Document Structure and the Common Elements part for all the common features that belong to every type of document.

Non-English documents and special characters[edit]

LaTeX has some nice features for most languages in the world. You can tell LaTeX to follow typography rules of the target language, ease special characters input, and so on. See Special Characters and Internationalization.

Modular document[edit]

See Modular Documents for good recommendations about the way to organize big projects into multiple files.

Questions and Issues[edit]

We highly urge you to read the FAQ if you have issues about basic features, or if you want to read essential recommendations. For the more specific questions and issues, refer to the Tips and Tricks page.

Macros for the utmost efficiency[edit]

The full power of LaTeX resides in macros. They make your documents very dynamic and flexible. See the dedicated part.

Working in a team[edit]

See chapter Collaborative Writing of LaTeX Documents.

Document Structure[edit]

The main point of writing a text is to convey ideas, information, or knowledge to the reader. The reader will understand the text better if these ideas are well-structured, and will see and feel this structure much better if the typographical form reflects the logical and semantic structure of the content.

LaTeX is different from other typesetting systems in that you just have to tell it the logical and semantical structure of a text. It then derives the typographical form of the text according to the “rules” given in the document class file and in various style files. LaTeX allows users to structure their documents with a variety of hierarchical constructs, including chapters, sections, subsections and paragraphs.

Global structure[edit]

When LaTeX processes an input file, it expects it to follow a certain structure. Thus every input file must contain the commands

\documentclass{...}

\begin{document}
...
\end{document}

The area between \documentclass{...} and \begin{document} is called the preamble. It normally contains commands that affect the entire document.

After the preamble, the text of your document is enclosed between two commands which identify the beginning and end of the actual document:

\begin{document}
...
\end{document}

You would put your text where the dots are. The reason for marking off the beginning of your text is that LaTeX allows you to insert extra setup specifications before it (where the blank line is in the example above: we'll be using this soon). The reason for marking off the end of your text is to provide a place for LaTeX to be programmed to do extra stuff automatically at the end of the document, like making an index.

A useful side-effect of marking the end of the document text is that you can store comments or temporary text underneath the \end{document} in the knowledge that LaTeX will never try to typeset them:

\end{document}
...

Preamble[edit]

Document classes[edit]

When processing an input file, LaTeX needs to know which layout standard to use. Layouts standards are contained within 'class files' which have .cls as their filename extension.

\documentclass[options]{class}

Here, the class parameter for the command \documentclass specifies the .cls file to use for the document. It is recommended to put this declaration at the very beginning. The LaTeX distribution provides additional classes for other layouts, including letters and slides. It is also possible to create your own, as is often done by journal publishers, who simply provide you with their own class file, which tells LaTeX how to format your content. But we'll be happy with the standard article class for now. The options parameter customizes the behavior of the document class. The options have to be separated by commas.

Example: an input file for a LaTeX document could start with the line

\documentclass[11pt,twoside,a4paper]{article}

which instructs LaTeX to typeset the document as an article with a base font size of 11 points, and to produce a layout suitable for double sided printing on A4 paper.

Here are some document classes that can be used with LaTeX:

Document Classes
article For articles in scientific journals, presentations, short reports, program documentation, invitations, ...
IEEEtran For articles with the IEEE Transactions format.
proc A class for proceedings based on the article class.
report For longer reports containing several chapters, small books, thesis, ...
book For real books.
slides For slides. The class uses big sans serif letters.
memoir For changing sensibly the output of the document. It is based on the book class, but you can create any kind of document with it [8]
letter For writing letters.
beamer For writing presentations (see LaTeX/Presentations).

The generic document classes that come with LaTeX offer some layout flexibility, which is why they have a lot of options in common. Non-generic classes (those provided by university departments or publication houses) may have different options than those shown below or no options at all. Normally, third-party classes come with their own documentation. The most common options for the generic document classes are listed in the following table:

Document Class Options
10pt, 11pt, 12pt Sets the size of the main font in the document. If no option is specified, 10pt is assumed.
a4paper, letterpaper,... Defines the paper size. The default size is letterpaper; However, many European distributions of TeX now come pre-set for A4, not Letter, and this is also true of all distributions of pdfLaTeX. Besides that, a5paper, b5paper, executivepaper, and legalpaper can be specified.
fleqn Typesets displayed formulas left-aligned instead of centered.
leqno Places the numbering of formulas on the left hand side instead of the right.
titlepage, notitlepage Specifies whether a new page should be started after the document title or not. The article class does not start a new page by default, while report and book do.
twocolumn Instructs LaTeX to typeset the document in two columns instead of one.
twoside, oneside Specifies whether double or single sided output should be generated. The classes article and report are single sided and the book class is double sided by default. Note that this option concerns the style of the document only. The option twoside does not tell the printer you use that it should actually make a two-sided printout.
landscape Changes the layout of the document to print in landscape mode.
openright, openany Makes chapters begin either only on right hand pages or on the next page available. This does not work with the article class, as it does not know about chapters. The report class by default starts chapters on the next page available and the book class starts them on right hand pages.
draft makes LaTeX indicate hyphenation and justification problems with a small square in the right-hand margin of the problem line so they can be located quickly by a human. It also suppresses the inclusion of images and shows only a frame where they would normally occur.

For example, if you want a report to be in 12pt type on A4, but printed one-sided in draft mode, you would use:

\documentclass[12pt,a4paper,oneside,draft]{report}

Packages[edit]

While writing your document, you will probably find that there are some areas where basic LaTeX cannot solve your problem. If you want to include graphics, colored text or source code from a file into your document, you need to enhance the capabilities of LaTeX. Such enhancements are called packages. Some packages come with the LaTeX base distribution. Others are provided separately. Modern TeX distributions come with a large number of packages pre-installed. The command to use a package is pretty simple: \usepackage:

\usepackage[options]{package}

command, where package is the name of the package and options is a list of keywords that trigger special features in the package. For example, to use the color package, which lets you typeset in colors, you would type:

\documentclass{report}
\usepackage{color}

\begin{document}
...
\end{document}

You can pass several options to a package, each separated by a comma.

\usepackage[option1,option2,option3]{''package_name''}

The document environment[edit]

Top matter[edit]

At the beginning of most documents there will be information about the document itself, such as the title and date, and also information about the authors, such as name, address, email etc. All of this type of information within LaTeX is collectively referred to as top matter. Although never explicitly specified (there is no \topmatter command) you are likely to encounter the term within LaTeX documentation.

A simple example:

\documentclass[11pt,a4paper]{report}

\begin{document}
\title{How to Structure a LaTeX Document}
\author{Andrew Roberts}
\date{December 2004}
\maketitle
\end{document}

The \title, \author, and \date commands are self-explanatory. You put the title, author name, and date in curly braces after the relevant command. The title and author are usually compulsory (at least if you want LaTeX to write the title automatically); if you omit the \date command, LaTeX uses today's date by default. You always finish the top matter with the \maketitle command, which tells LaTeX that it's complete and it can typeset the title according to the information you have provided and the class (style) you are using. If you omit \maketitle, the title will never be typeset.


Using this approach, you can only create a title with a fixed layout. If you want to create your title freely, see the Title Creation section. You should remember, however, that the goal of LaTeX is to leave formatting to the documentclass designer, and if you wish to submit your work to multiple publishers then you should avoid designing a custom title.

Abstract[edit]

As most research papers have an abstract, there are predefined commands for telling LaTeX which part of the content makes up the abstract. This should appear in its logical order, therefore, after the top matter, but before the main sections of the body. This command is available for the document classes article and report, but not book.

\documentclass{article}

\begin{document}

\begin{abstract}
Your abstract goes here...
...
\end{abstract}
...
\end{document}

By default, LaTeX will use the word "Abstract" as a title for your abstract. If you want to change it into anything else, e.g. "Executive Summary", add the following line before you begin the abstract environment:

\renewcommand{\abstractname}{Executive Summary}

Sectioning commands[edit]

The commands for inserting sections are fairly intuitive. Of course, certain commands are appropriate to different document classes. For example, a book has chapters but an article doesn't. Here are some of the structure commands found in simple.tex.

\chapter{Introduction}
This chapter's content...

\section{Structure}
This section's content...

\subsection{Top Matter}
This subsection's content...

\subsubsection{Article Information}
This subsubsection's content...

Notice that you do not need to specify section numbers; LaTeX will sort that out for you. Also, for sections, you do not need to use \begin and \end commands to indicate which content belongs to a given block.

LaTeX provides 7 levels of depth for defining sections (see table below). Each section in this table is a subsection of the one above it.

Command Level Comment
\part{''part''} -1 not in letters
\chapter{''chapter''} 0 only books and reports
\section{''section''} 1 not in letters
\subsection{''subsection''} 2 not in letters
\subsubsection{''subsubsection''} 3 not in letters
\paragraph{''paragraph''} 4 not in letters
\subparagraph{''subparagraph''} 5 not in letters

All the titles of the sections are added automatically to the table of contents (if you decide to insert one). But if you make manual styling changes to your heading, for example a very long title, or some special line-breaks or unusual font-play, this would appear in the Table of Contents as well, which you almost certainly don't want. LaTeX allows you to give an optional extra version of the heading text which only gets used in the Table of Contents and any running heads, if they are in effect. This optional alternative heading goes in [square brackets] before the curly braces:

\section[Effect on staff turnover]{An analysis of the
effect of the revised recruitment policies on staff
turnover at divisional headquarters}

Section numbering[edit]

Numbering of the sections is performed automatically by LaTeX, so don't bother adding them explicitly, just insert the heading you want between the curly braces. Parts get roman numerals (Part I, Part II, etc.); chapters and sections get decimal numbering like this document, and appendices (which are just a special case of chapters, and share the same structure) are lettered (A, B, C, etc.).

You can change the depth to which section numbering occurs, so you can turn it off selectively. By default it is set to 3. If you only want parts, chapters, and sections numbered, not subsections or subsubsections etc., you can change the value of the secnumdepth counter using the \setcounter command, giving the depth level you wish. For example, if you want to change it to "1":

\setcounter{secnumdepth}{1}

A related counter is tocdepth, which specifies what depth to take the Table of Contents to. It can be reset in exactly the same way as secnumdepth. For example:

\setcounter{tocdepth}{3}

To get an unnumbered section heading which does not go into the Table of Contents, follow the command name with an asterisk before the opening curly brace:

\subsection*{Introduction}

All the divisional commands from \part* to \subparagraph* have this "starred" version which can be used on special occasions for an unnumbered heading when the setting of secnumdepth would normally mean it would be numbered.

If you want the unnumbered section to be in the table of contents anyway, use package unnumberedtotoc [1]. It provides the command

\addsec{Introduction}

which will take care of a proper header as well. \addpart and \addchap are also available. KOMA classes provide those commands by default.

If you don't want to use package unnumberedtotoc, you have to do everything by hand using \addcontentsline and \markright{} (or even \markboth{}{}).


\section*{Introduction}
\markright{}
\addcontentsline{toc}{section}{Introduction}

Note that if you use PDF bookmarks you will need to add a phantom section so that hyperlinks will lead to the correct place in the document. The \phantomsection command is defined in the hyperref package, and is Commonly used like this:

\phantomsection
\addcontentsline{toc}{section}{Introduction}
\section*{Introduction}

For chapters you will also need to clear the page (this will also correct page numbering in the ToC):

\clearpage %or \cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{List of Figures}
\listoffigures

Section number style[edit]

See Counters.

Ordinary paragraphs[edit]

Paragraphs of text come after section headings. Simply type the text and leave a blank line between paragraphs. The blank line means "start a new paragraph here": it does not mean you get a blank line in the typeset output. For formatting paragraph indents and spacing between paragraphs, refer to the Paragraph Formatting section.

Table of contents[edit]

All auto-numbered headings get entered in the Table of Contents (ToC) automatically. You don't have to print a ToC, but if you want to, just add the command \tableofcontents at the point where you want it printed (usually after the Abstract or Summary).

Entries for the ToC are recorded each time you process your document, and reproduced the next time you process it, so you need to re-run LaTeX one extra time to ensure that all ToC pagenumber references are correctly calculated. We've already seen how to use the optional argument to the sectioning commands to add text to the ToC which is slightly different from the one printed in the body of the document. It is also possible to add extra lines to the ToC, to force extra or unnumbered section headings to be included.

The commands \listoffigures and \listoftables work in exactly the same way as \tableofcontents to automatically list all your tables and figures. If you use them, they normally go after the \tableofcontents command. The \tableofcontents command normally shows only numbered section headings, and only down to the level defined by the tocdepth counter, but you can add extra entries with the \addcontentsline command. For example if you use an unnumbered section heading command to start a preliminary piece of text like a Foreword or Preface, you can write:

\subsection*{Preface}
\addcontentsline{toc}{subsection}{Preface}

This will format an unnumbered ToC entry for "Preface" in the "subsection" style. You can use the same mechanism to add lines to the List of Figures or List of Tables by substituting lof or lot for toc. If the hyperref package is used and the link does not point to the correct chapter, the command \phantomsection in combination with \clearpage or \cleardoublepage can be used (see also Labels and Cross-referencing):

\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{List of Figures}
\listoffigures

To change the title of the ToC, you have to paste this command \renewcommand{\contentsname}{<New table of contents title>} in your document preamble. The List of Figures (LoF) and List of Tables (LoT) names can be changed by replacing the \contentsname with \listfigurename for LoF and \listtablename for LoT.

Depth[edit]

The default ToC will list headings of level 3 and above. To change how deep the table of contents displays automatically the following command can be used in the preamble:

\setcounter{tocdepth}{4}

This will make the table of contents include everything down to paragraphs. The levels are defined above on this page. Note that this solution does not permit changing the depth dynamically.

You can change the depth of specific section type, which could be useful for PDF bookmarks (if you are using the hyperref package) :

\makeatletter
\renewcommand*{\toclevel@chapter}{-1} % Put chapter depth at the same level as \part.
\chapter{Epilogue}
\renewcommand*{\toclevel@chapter}{0} % Put chapter depth back to its default value.
\makeatother

In order to further tune the display or the numbering of the table of contents, for instance if the appendix should be less detailed, you can make use of the tocvsec2 package (CTAN, doc).

Book structure[edit]

The standard LaTeX book class follows the same layout described above with some additions. By default a book will be two-sided, i.e. left and right margins will change according to the page number parity. Furthermore current chapter and section will be printed in the header.

If you do not make use of chapters, it is barely useful to use the book class.

Additionally the class provides macros to change the formatting of some places of the document. We will give you some advice on how to use them properly.[2]

\begin{document}
\frontmatter

\maketitle

% Introductory chapters
\chapter{Preface}
% ...

\mainmatter
\chapter{First chapter}
% ...

\appendix
\chapter{First Appendix}

\backmatter
\chapter{Last note}
  • The frontmatter chapters will not be numbered. Page numbers will be printed in roman numerals. Frontmatter is not supposed to have sections, so they will be numbered 0.n because there is no chapter numbering. Check the Counters chapter for a fix.
  • The mainmatter chapters works as usual. The command resets the page numbering. Page numbers will be printed in arabic numerals.
  • The \appendix macro can be used to indicate that following sections or chapters are to be numbered as appendices. Appendices can be used for the article class too:
\appendix
\section{First Appendix}

Only use the \appendix macro once for all appendices.

  • The backmatter behaves like the frontmatter. It has the same issue with section numbering.

As a general rule you should avoid mixing the command order. Nonetheless all commands are optional, so you might consider using only a few.

Note that the special content like the table of contents is considered as an unnumbered chapter.

Page order[edit]

This is one traditional page order for books.

Frontmatter
  1. Half-title
  2. Empty
  3. Title page
  4. Information (copyright notice, ISBN, etc.)
  5. Dedication if any, else empty
  6. Table of contents
  7. List of figures (can be in the backmatter too)
  8. Preface chapter
Mainmatter
  1. Main topic
Appendix
  1. Some subordinate chapters
Backmatter
  1. Bibliography
  2. Glossary / Index


Special pages[edit]

Comprehensive papers often feature special pages at the end, like indices, glossaries and bibliographies. Since this is quite a complex topic, we will give you details in the dedicated part Special Pages.

Bibliography[edit]

Any good research paper will have a complete list of references. LaTeX has two ways of inserting your references into a document:

  • you can embed them within the document itself. It's simpler, but it can be time-consuming if you are writing several papers about similar subjects so that you often have to cite the same books.
  • you can store them in an external BibTeX file and then link them via a command to your current document and use a Bibtex style to define how they appear. This way you can create a small database of the references you might use and simply link them, letting LaTeX work for you.

To learn how to add a bibliography to your document, see the Bibliography Management section.

Notes and references[edit]

Text Formatting[edit]

This section will guide you through text-formatting techniques. Formatting refers to most things to do with appearance including text style and spacing. Formatting may also refer to paragraph and page layout, here we will focus on the customization of words and sentences.

Writers use formatting techniques to differentiate textual elements from the rest of the text. The many ways in which writers wish to differentiate textual elements give rise to many formatting techniques. Italicization is often used to add emphasis to key words or phrases. Footnotes are useful for providing extra information or clarification without interrupting the main flow of the text. For these reasons, formatting is very important. However, it is also very easy to abuse, and a document that has been over-done can look and read worse than one with none at all.

LaTeX is so flexible that we will actually only skim the surface, as you can have much more control over the presentation of your document if you wish. Having said that, one of the purposes of LaTeX is to take away the stress of having to deal with the physical presentation yourself, so you need not get too carried away!

Spacing[edit]

Line Spacing[edit]

If you want to use larger inter-line spacing in a document, you can change its value by putting the

\linespread{factor}

command into the preamble of your document. Use \linespread{1.3} for "one and a half" line spacing, and \linespread{1.6} for "double" line spacing. Normally the lines are not spread, so the default line spread factor is 1. This may not be ideal in all situations: see http://tex.stackexchange.com/questions/30073/why-is-the-linespread-factor-as-it-is .

The setspace package allows more fine-grained control over line spacing. To set "one and a half" line spacing document-wide, but not where it is usually unnecessary (e.g. footnotes, captions):

\usepackage{setspace}
%\singlespacing
\onehalfspacing
%\doublespacing
%\setstretch{1.1}

To change line spacing within the document, the setspace package provides the environments singlespace, onehalfspace, doublespace and spacing:

This paragraph has \\ default \\ line spacing.
 
\begin{doublespace}
  This paragraph has \\ double \\ line spacing.
\end{doublespace}
 
\begin{spacing}{2.5}
  This paragraph has \\ huge gaps \\ between lines.
\end{spacing}

Non-breaking spaces[edit]

This essential feature is a bit unknown to newcomers, although it is available on most WYSIWYG document processors. A non-breaking space between two tokens (e.g. words, punctuation marks) prevents the processors from inserting a line break between them. Additionally, a non-breaking space cannot be enlarged. It is very important for a consistent reading.

LaTeX uses the '~' symbol as a non-breaking space. You would usually use non-breaking spaces for punctuation marks in some languages, for units and currencies, for initials, etc. In French typography, you would put a non-breaking space before all two-parts punctuation marks.

Examples:

D.~Knuth
50~€

Space between words and sentences[edit]

To get a straight right margin in the output, LaTeX inserts varying amounts of space between the words. By default, it also inserts slightly more space at the end of a sentence. However, the extra space added at the end of sentences is generally considered typographically old-fashioned in English language printing. (The practice is found in nineteenth century design and in twentieth century typewriter styles.) Most modern typesetters treat the end of sentence space the same as the interword space. (See for example, Bringhurst's Elements of Typographic Style.) The additional space after periods can be disabled with the command

\frenchspacing

which tells LaTeX not to insert more space after a period than after ordinary character. Frenchspacing can be turned off later in your document via the \nonfrenchspacing command.

If an author wishes to use the wider end-of-sentence spacing, care must be exercised so that punctuation marks are not misinterpreted as ends of sentences. TeX assumes that sentences end with periods, question marks or exclamation marks. Although if a period follows an uppercase letter, this is not taken as a sentence ending, since periods after uppercase letters normally occur in abbreviations. Any exception from these assumptions has to be specified by the author. A backslash in front of a space generates a space that will not be enlarged. A tilde ‘~’ character generates a non-breaking space. The command \@ in front of a period specifies that this period terminates a sentence even when it follows an uppercase letter. (If you are using \frenchspacing, then none of these exceptions need be specified.)

Stretched spaces[edit]

You can insert a horizontal stretched space with \hfill in a line so that the rest gets "pushed" toward the right margin. For instance this may be useful in the header.

Author Name \hfill \today

Similarly you can insert vertical stretched space with \vfill. It may be useful for special pages.

\maketitle
\vfill
\tableofcontents
\clearpage

\section{My first section}
% ...

See Lengths for more details.

Manual spacing[edit]

The spaces between words and sentences, between paragraphs, sections, subsections, etc. is determined automatically by LaTeX. It is against LaTeX philosophy to insert spaces manually and will usually lead to bad formatting. Manual spacing is a matter of macro writing and package creation.

See Lengths for more details.

Hyphenation[edit]

LaTeX hyphenates words whenever necessary. Hyphenation rules will vary for different languages. LaTeX only supports English by default, so if you want to have correct hyphenation rules for your desired language, see Internationalization.

If the hyphenation algorithm does not find the correct hyphenation points, you can remedy the situation by using the following commands to tell TeX about the exception. The command

\hyphenation{word list}

causes the words listed in the argument (separated by blanks) to be hyphenated only at the points marked by “-”. The argument of the command should only contain words built from normal letters, or rather characters that are considered to be normal letters by LaTeX. It is known that the hyphenation algorithm does not find all correct American English hyphenation points for several words. A log of known exceptions is published periodically in the TUGboat journal. (2012 list: https://www.tug.org/TUGboat/tb33-1/tb103hyf.pdf).

The hyphenation hints are stored for the language that is active when the hyphenation command occurs. This means that if you place a hyphenation command into the preamble of your document it will influence the English language hyphenation. If you place the command after the \begin{document} and you are using some package for national language support like babel, then the hyphenation hints will be active in the language activated through babel. The example below will allow “hyphenation” to be hyphenated as well as “Hyphenation”, and it prevents “FORTRAN”, “Fortran” and “fortran” from being hyphenated at all. No special characters or symbols are allowed in the argument. Example:

\hyphenation{FORTRAN Hy-phen-a-tion}

The command \- inserts a discretionary hyphen into a word. This also becomes the only point where hyphenation is allowed in this word. This command is especially useful for words containing special characters (e.g., accented characters), because LaTeX does not automatically hyphenate words containing special characters.

\begin{minipage}{2in}
I think this is: su\-per\-cal\-%
i\-frag\-i\-lis\-tic\-ex\-pi\-%
al\-i\-do\-cious
\end{minipage}

'"`UNIQ--postMath-00000002-QINU`"'

LaTeX does not hyphenate compound words that contain a dash[1]. There are two packages that can add back flexibility. The hyphenat package supplies the \hyp command. This command typesets the dash and then subjects the constituent words to automatic hyphenation. After loading the package:

\usepackage{hyphenat}

one should write, instead of electromagnetic-endioscopy:

electromagnetic\hyp{}endioscopy

The extdash package also offers features for controlling the hyphenation of compound words containing dashes — as opposed to the words themselves which it leaves to LaTeX. The shortcuts option enables a more compressed syntax:

\usepackage[shortcuts]{extdash}

Typical usage is as follows, assuming the compressed syntax. In both cases, LaTeX can break and hyphenate the constituent words, but in the latter case, it will not break after the L:

electromagnetic\-/endioscopy
L\=/approximation

One or more words can be kept together on the one line with the standard LaTeX command:

\mbox{text}

This prevents hyphenation and causes its argument to be kept together under all circumstances. For example:

My phone number will change soon. It will be \mbox{0116 291 2319}.

\fbox is similar to \mbox, but in addition there will be a visible box drawn around the content.

To avoid hyphenation altogether, the penalty for hyphenation can be set to an extreme value:

\hyphenpenalty=100000

You can change the degree to which LaTeX will hyphenate by changing the value of \tolerance=1000 and \hyphenpenalty=1000. You'll have to experiment with the values to achieve the desired effect. A document which has a low tolerance value will cause LaTeX not to tolerate uneven spacing between words, hyphenating words more frequently than in documents with higher tolerances. Also note that using a higher text width will decrease the probability of encountering badly hyphenated word. For example adding

\usepackage{geometry}

will widen the text width and reduce the amount of margin overruns.

Quote-marks[edit]

LaTeX treats left and right quotes as different entities. For single quotes, a grave accent, ` (on American keyboards, this symbol is found on the tilde key; adjacent to the number 1 key on most keyboards) gives a left quote mark, and an apostrophe, ' gives a right. For double quotes, simply double the symbols, and LaTeX will interpret them accordingly. (Don't use the " for right double quotes: when the babel package is used for some languages (e.g. German), the " is redefined to produce an umlaut accent; using " for right double quotes will either lead to bad spacing or it being used to produce an umlaut). On British keyboards, ' ` ' is left of the ' 1 ' key and shares the key with ' ¬ ', and sometimes ' ¦ ' or ' | '. The apostrophe (') key is to the right of the colon/semicolon key and shares it with the ' @ ' symbol.


To `quote' in LaTeX

Cquote1.png

To ``quote'' in LaTeX

Quote22.png

To ``quote" in LaTeX

Quote22.png

To ,,quote'' in LaTeX

Quote4.png

,,German quotation marks``

Example of German quotation marks.png

<<French quotation marks>>

Example of French quotation marks.png

``Please press the `x' key.''

Latex quote 3.png

,,Proszę, naciśnij klawisz <<x>>''.

Latex quote 4.png

The right quote is also used for apostrophe in LaTeX without trouble.

For left bottom quote and European quoting style you need to use T1 font encoding enabled by:

\usepackage[T1]{fontenc}

See Fonts for more details on font encoding.

The package csquotes offers a multilingual solution to quotations, with integration to citation mechanisms offered by BibTeX. This package allows one for example to switch languages and quotation styles according to babel language selections.

Diacritics and accents[edit]

Most accents and diacritics may be inserted with direct keyboard input by configuring the preamble properly. For symbols unavailable on your keyboard, diacritics may be added to letters by placing special escaped metacharacters before the letter that requires the diacritic.

See Special Characters.

Margin misalignment[edit]

Some very long words, numbers or URLs may not be hyphenated properly and move far beyond the side margin. One solution for this problem is to use sloppypar environment, which tells LaTeX to adjust word spacing less strictly. As a result, some spaces between words may be a bit too large, but long words will be placed properly.

This is a paragraph with
a very long word ABCDEFGHIJKLMNOPRST;
then we have another bad thing
--- a long number 1234567890123456789.

\begin{sloppypar}
This is a paragraph with
a very long word ABCDEFGHIJKLMNOPRST;
then we have another bad thing
--- a long number 1234567890123456789.
\end{sloppypar}

LaTeX sloppypar.png

Another solution is to edit the text to avoid long words, numbers or URLs approaching the side margin.

Ligatures[edit]

Some letter combinations are typeset not just by setting the different letters one after the other, but by actually using special symbols (like "ff"), called ligatures. Ligatures can be prohibited by inserting {} or, if this does not work, {\kern0pt} between the two letters in question. This might be necessary with words built from two words. A classic example is shelfful:[2]

\Large Not shelfful\\
but shelf{}ful

Latex example ligatures.png

If you are using LuaLaTeX, you can automate some of this work with the selnolig package.

Slash marks[edit]

The normal typesetting of the / character in LaTeX does not allow following characters to be "broken" onto new lines, which often create "overfull" errors in output (where letters push off the margin). Words that use slash marks, such as "input/output" should be typeset as "input\slash output", which allow the line to "break" after the slash mark (if needed). The use of the / character in LaTeX should be restricted to units, such as "mm/year", which should not be broken over multiple lines.

A word after / or \slash is not automatically hyphenated. This is a similar problem to non-hyphenation of words with a dash described under Hyphenation. One way to have both a line break and automatic hyphenation in both words is

input\slash\hspace{0pt}output

Both / and \slash can be used with a zero \hspace like this. \slash includes a penalty to make a line break there less desirable. This combination can be made into a new slash macro if desired. The hyphenat package includes an \fshyp which will add a hyphen after the slash like "input/- output" if the line breaks there.

Fonts[edit]

To change the font family, emphasize text, and other font-related issues, see Fonts.

Formatting macros[edit]

Even if you can easily change the output of your fonts using those commands, you're better off not using explicit commands like this, because they work in opposition to the basic idea of LaTeX, which is to separate the logical and visual markup of your document. This means that if you use the same font changing command in several places in order to typeset a special kind of information, you should use \newcommand to define a "logical wrapper command" for the font changing command.

\newcommand{\oops}[1]{\textit{#1}}

Do not \oops{enter} this room,
it’s occupied by \oops{machines}
of unknown origin and purpose.

Do not enter this room, it’s occupied by machines of unknown origin and purpose.

This approach has the advantage that you can decide at some later stage that you want to use some visual representation of danger other than \textit, without having to wade through your document, identifying all the occurrences of \textit and then figuring out for each one whether it was used for pointing out danger or for some other reason.

See Macros for more details.

Text mode superscript and subscript[edit]

Sub and superscripting can be done quite easily using \textsubscript{} and \textsuperscript{}.

\documentclass{article}
\begin{document}
Wombat\textsubscript{walzing}

Michelangelo was born on March 6\textsuperscript{th}, 1475.
\end{document}

LaTeXSubSuperscript.png

Note: A LaTeX version from 2015 or later, or the package fixltx2e, is needed to use text-mode subscripts in all contexts.[3]

Text figures ("old style" numerals)[edit]

Many typographers prefer to use titling figures, sometimes called lining figures, when numerals are interspersed with full caps, when they appear in tables, and when they appear in equations, using text figures elsewhere. LaTeX allows this usage through the \oldstylenums{} command:

\oldstylenums{1234567890}

Some fonts do not have text figures built in; the textcomp package attempts to remedy this by effectively generating text figures from the currently-selected font. Put \usepackage{textcomp} in your preamble. textcomp also allows you to use decimal points, properly formatted dollar signs, etc. within \oldstylenums{}.

One common use for text figures is in section, paragraph, and page numbers. These can be set to use text figures by placing some code in your preamble:

\usepackage{textcomp}

% Enclose everything in an \AtBeginDocument{}
\AtBeginDocument{%
  % Make \section{} use text figures
  \let\myTheSection\thesection
  \renewcommand{\thesection}{ \oldstylenums{\myTheSection} }

  % Make \paragraph{} use text figures
  \let\myTheParagraph\theparagraph
  \renewcommand{\theparagraph}{ \oldstylenums{\myTheParagraph} }

  % Make the page numbers in text figures
  \let\myThePage\thepage
  \renewcommand{\thepage}{ \oldstylenums{\myThePage} }
}

Should you use additional sectioning or paragraphing commands, you may adapt the previous code listing to include them as well.

Note

A subsequent use of the \pagenumbering command, e.g., \pagenumbering{arabic}, will reset the \thepage command back to the original. Thus, if you use the \pagenumbering command in your document, be sure to reinstate your \myThePage definition from the code above:

...
\tableofcontents
\pagenumbering{roman}
\chapter{Preface}
...
\chapter{Introduction}
...
\pagenumbering{arabic}
% without this, the \thepage command will not be in oldstyle (e.g., in your Table of Contents}
\renewcommand{\thepage}{ \oldstylenums{\myThePage} }
\Chapter{Foo}
...

Dashes and hyphens[edit]

LaTeX knows four kinds of dashes: a hyphen (-), en dash (–), em dash (—), or a minus sign (−). You can access three of them with different numbers of consecutive dashes. The fourth sign is actually not a dash at all—it is the mathematical minus sign:

Hyphen: daughter-in-law, X-rated\\
En dash: pages 13--67\\
Em dash: yes---or no? \\
Minus sign: $0$, $1$ and $-1$

Latex dashes example.png

The names for these dashes are: ‘-’(-) hyphen , ‘--’(–) en-dash , ‘---’(—) em-dash and ‘'"`UNIQ--postMath-00000003-QINU`"'’(−) minus sign. They have different purposes:

Input Output Purpose
- - inter-word
-- page range, 1–10
--- punctuation dash—like this
$-$ minus sign

Use \hyp{} macro from hyphenat package instead of hyphen if you want LaTeX to break compound words between lines.

The commands \textendash and \textemdash are also used to produce en-dash (–), and em-dash (—), respectively.

Ellipsis (…)[edit]

A sequence of three dots is known as an ellipsis, which is commonly used to indicate omitted text. On a typewriter, a comma or a period takes the same amount of space as any other letter. In book printing, these characters occupy only a little space and are set very close to the preceding letter. Therefore, you cannot enter ‘ellipsis’ by just typing three dots, as the spacing would be wrong. Instead, there is a special command for these dots. It is called \ldots:

Not like this ... but like this:\\
New York, Tokyo, Budapest, \ldots

Latex example text dots.png

Alternatively, you can use the \textellipsis command which allows the spacing between the dots to vary.

Ready-made strings[edit]

There are some very simple LaTeX commands for typesetting special text strings:

Latex ready-made strings.png


Clipboard

To do:
Describe microtype package -- hanging punctuation, font expansion, additional kerning.

Notes and References[edit]

  1. hyphenat package documentation, p3
  2. Knuth, Donald. "Chapter 5: Grouping". The TeXbook. p. 19. 
  3. http://tex.stackexchange.com/questions/1013/how-to-typeset-subscript-in-usual-text-mode

This page uses material from Andy Roberts' Getting to grips with LaTeX with permission from the author.

Paragraph Formatting[edit]

Altering the paragraph formatting is rarely necessary in academic writing. It is primarily used for formatting text in floats or for more exotic documents.

Paragraph alignment[edit]

Paragraphs in LaTeX are usually fully justified, i.e. flush with both the left and right margins. For whatever reason, should you wish to alter the justification of a paragraph, there are three environments at hand, and also LaTeX command equivalents.

Alignment Environment Command
Left justified flushleft \raggedright
Right justified flushright \raggedleft
Center center \centering

All text between the \begin and \end of the specified environment will be justified appropriately. The commands listed are for use within other environments. For example, p (paragraph) columns in tabular.

However, if you really need to disable one of the above commands locally (for example because you have to use some broken package), you can use the command \justifying from package ragged2e.

Paragraph indent[edit]

By default, the first paragraph after a heading follows the standard Anglo-American publishers' practice of no indentation. The size of subsequent paragraph indents is determined by a parameter called \parindent. The default length that this constant holds is set by the document class that you use. It is possible to override it by using the \setlength command. This will set paragraph indents to 1cm:

\setlength{\parindent}{1cm} % Default is 15pt.

Whitespace in LaTeX can also be made flexible (what Lamport calls "rubber" lengths). This means that values such as extra vertical space inserted before a paragraph \parskip can have a default dimension plus an amount of expansion minus an amount of contraction. This is useful on pages in complex documents where not every page may be an exact number of fixed-height lines long, so some give-and-take in vertical space is useful. You specify this in a \setlength command like this:

\setlength{\parskip}{1cm plus 4mm minus 3mm}

If you want to indent a paragraph that is not indented, you can use

\indent

at the beginning of the paragraph. Obviously, this will only have an effect when \parindent is not set to zero. If you want to indent the beginning of every section, you can use the indentfirst package: once loaded, the beginning of any chapter/section is indented by the usual paragraph indentation.

To create a non-indented paragraph, you can use

\noindent

as the first command of the paragraph. This might come in handy when you start a document with body text and not with a sectioning command.

Be careful, however, if you decide to set the indent to zero, then it means you will need a vertical space between paragraphs in order to make them clear. The space between paragraphs is held in \parskip, which could be altered in a similar fashion as above. However, this parameter is used elsewhere too, such as in lists, which means you run the risk of making various parts of your document look very untidy by changing this setting. If you want to use the style of having no indentation with a space between paragraphs, use the parskip package, which does this for you, while making adjustments to the spacing of lists and other structures which use paragraph spacing, so they don't get too far apart. If you want both indent and break, use

\usepackage{parskip}
\setlength{\parindent}{15pt}

To indent subsequent lines of a paragraph, use the TeX command \hangindent. (While the default behaviour is to apply the hanging indent after the first line, this may be changed with the \hangafter command.) An example follows.

\hangindent=0.7cm This paragraph has an extra indentation at the left.

The TeX commands \leftskip and \rightskip add additional space to the left and right sides of each line, allowing the formatting for subsequent paragraphs to differ from the overall document margins. This space is in addition to the indentation added by \parindent and \hangindent.

To change the indentation of the last line in a paragraph, use the TeX command \parfillskip.

Paragraph line break[edit]

Default style for \paragraph may seem odd in the first place, as it writes the following text next to the title. If you do not like it, use a class other than the traditional article/book, or use ConTeXt or PlainTeX. Hacking of the class in use is really not the way LaTeX is intended to be used, and you may encounter a lot of frustrating issues.

Anyway, let's analyse the problem. If you add a manual line break with \\, LaTeX will complain that

There's no line here to end.

Simply adding an empty space will do it:

\paragraph{Title} \hspace{0pt} \\
Text...

Alternatively, you can use the shorter, yet not completely equivalent syntax:

\paragraph{Title} ~\\
Text...

Line spacing[edit]

To change line spacing in the whole document use the command \linespread covered in Text Formatting.

Alternatively, you can use the \usepackage{setspace} package, which is also covered in Text Formatting. This package provides the commands \doublespacing, \onehalfspacing, \singlespacing and \setstretch{baselinestretch}, which will specify the line spacing for all sections and paragraphs until another command is used. Furthermore, the package provides the following environments in order to change line spacing within the document but not document-wide:

  • doublespace: lines are double spaced;
  • onehalfspace: line spacing set to one-and-half spacing;
  • singlespace: normal line spacing;
  • spacing: customizable line spacing, e.g. \begin{spacing}{\baselinestretch} ... \end{spacing}.

See the section on customizing lists for information on how to change the line spacing in lists.

Manual breaks[edit]

LaTeX takes care of formatting, breaks included. You should avoid manual breaking as much as possible, for it could lead to very bad formatting.

Controlling the breaks should be reserved to macro and package writers. Here follows a quick reference.

\newline Breaks the line at the point of the command.
\\ Breaks the line at the point of the command; it is usually a shorter version of the previous command, but LaTeX sometimes redefines it for several environments.
\\[extra-space] Command \\ has an optional argument that specifies the amount of extra vertical space to be inserted before the next line. This amount can be negative.
\\* Breaks the line at the point of the command and additionally prohibits a page break after the forced line break. This command also features the vertical space as optional parameter.
\linebreak[number] Breaks the line at the point of the command. The number you provide as an argument represents the priority of the command in a range from 0 (allow but not encourage a line break) to 4 (do it anyway). LaTeX will try to produce the best line breaks possible. If it cannot, it will decide whether or not to include the linebreak according to the priority you have provided.
\break (TeX) If used in horizontal mode, this is equivalent to `\linebreak`, if used in vertical mode it is equivalent to `\pagebreak`.
\par (TeX) Ends the current paragraph. It is equivalent to leaving a blank line in the input.
  • If you use these comments to put a break in a section heading, the line will also be broken in the table of contents. To avoid such a division, you can use the \section[]{} command, which is described in sectioning commands.

The page breaks are covered in Page Layout. More details on manual spaces between paragraphs (such as \bigskip) can be found in Lengths.

Special paragraphs[edit]

Verbatim text[edit]

There are several ways to introduce text that won't be interpreted by the compiler. If you use the verbatim environment, everything input between the begin and end commands are processed as if by a typewriter. All spaces and new lines are reproduced as given, and the text is displayed in an appropriate fixed-width font. Any LaTeX command will be ignored and handled as plain text. This is ideal for typesetting program source code. Here is an example:

\begin{verbatim}
The verbatim environment
  simply reproduces every
 character you input,
including all  s p a c e s!
\end{verbatim}

Verbatim.svg

Note: once in the verbatim environment, the only command that will be recognized is \end{verbatim}. Any others will be output. The font size in the verbatim environment can be adjusted by placing a font size command before \begin{verbatim}. If this is a problem, you can use the alltt package instead, providing an environment with the same name:

\begin{alltt}
Verbatim extended with the ability
to use normal commands.  Therefore, it
is possible to \emph{emphasize} words in
this environment, for example.
\end{alltt}

Alltt.svg

Remember to add \usepackage{alltt} to your preamble to use it though! Within the alltt environment, you can use the command \normalfont to get back the normal font. To write equations within the alltt enviroment, you can use \( and \) to enclose them, instead of the usual $.

When using \textbf{} inside the alltt enviroment, note that the standard font has no bold TT font. Txtfonts has bold fonts: just add \renewcommand{\ttdefault}{txtt} after \usepackage{alltt}.

If you just want to introduce a short verbatim phrase, you don't need to use the whole environment, but you have the \verb command:

\verb+my text+

The first character following \verb is the delimiter: here we have used "+", but you can use any character you like except *; \verb will print verbatim all the text after it until it finds the next delimiter. For example, the code:

\verb;\textbf{Hi mate!};

will print \textbf{Hi mate!}, ignoring the effect \textbf should have on text.

For more control over formatting, however, you can try the fancyvrb package, which provides a Verbatim environment (note the capital letter) which lets you draw a rule round the verbatim text, change the font size, and even have typographic effects inside the Verbatim environment. It can also be used in conjunction with the fancybox package and it can add reference line numbers (useful for chunks of data or programming), and it can even include entire external files.

To use verbatim in beamer, the frame needs to be made fragile: \begin{frame}[fragile] .

Typesetting URLs[edit]

One of either the hyperref or url packages provides the \url command, which properly typesets URLs, for example:

Go to \url{http://www.uni.edu/~myname/best-website-ever.html} for my website.

will show this URL exactly as typed (similar to the \verb command), but the \url command also performs a hyphenless break at punctuation characters (only in PDFLaTeX, not in plain LaTeX+ dvips). It was designed for Web URLs, so it understands their syntax and will never break midway through an unpunctuated word, only at slashes and full stops. Bear in mind, however, that spaces are forbidden in URLs, so using spaces in \url arguments will fail, as will using other non-URL-valid characters.

When using this command through the hyperref package, the URL is "clickable" in the PDF document, whereas it is not linked to the web when using only the url package. Also when using the hyperref package, to remove the border placed around a URL, insert pdfborder = {0 0 0 0} inside the \hypersetup{}. (Alternately pdfborder = {0 0 0} might work if the four zeroes do not.)

You can put the following code into your preamble to change the style, how URLs are displayed to the normal font:

\urlstyle{same}

See also Hyperlinks

Listing environment[edit]

This is also an extension of the verbatim environment provided by the moreverb package. The extra functionality it provides is that it can add line numbers along side the text. The command: \begin{listing}[step]{first line}. The mandatory first line argument is for specifying which line the numbering shall commence. The optional step is the step between numbered lines (the default is 1, which means every line will be numbered).

To use this environment, remember to add \usepackage{moreverb} to the document preamble.

Multiline comments[edit]

As we have seen, the only way LaTeX allows you to add comments is by using the special character %, that will comment out all the rest of the line after itself. This approach is really time-consuming if you want to insert long comments or just comment out a part of your document that you want to improve later, unless you're using an editor that automates this process. Alternatively, you can use the verbatim package, to be loaded in the preamble as usual:

\usepackage{verbatim}

(you can also use the comment package instead) you can use an environment called comment that will comment out everything within itself. Here is an example:

This is another
\begin{comment}
rather stupid,
but helpful
\end{comment}
example for embedding
comments in your document.

This is another example for embedding comments in your document.

Note that this won’t work inside complex environments, like math for example. You may be wondering, why should I load a package called verbatim to have the possibility to add comments? The answer is straightforward: commented text is interpreted by the compiler just like verbatim text, the only difference is that verbatim text is introduced within the document, while the comment is just dropped.

Alternatively, you can define a \comment{} command, by adding the following to the document's preamble:

\newcommand{\comment}[1]{}

Then, to comment out text, simply do something like this:

\comment{This is a long comment and can extend over multiple lines, etc.} But it won't show.

But it won't show.

This approach can, however, produce unwanted spaces in the document, so it may work better to use

\newcommand{\comment}[2]{#2}

Then if you supply only one argument to \comment{}, this has the desired effect without producing extra spaces.

Another drawback is that content is still parsed and possibly expanded, so you cannot put anything you want in it (such as LaTeX commands).

Skipping parts of the source[edit]

A more robust way of making the TeX engine skip some part of the source is to use the TeX \iffalse-conditional. The typical use is

This we want to keep

\iffalse % ----- START THE CUT ---------

But this part 
$$\int_{-\infty}^\infty\mathrm{d}x\,x^{-2}$$ 
we want to skip

\fi % ---------- END THE CUT -----------

Here it begins again

This we want to keep

Here it begins again

The \iffalse-conditional is always false.

Quoting text[edit]

LaTeX provides several environments for quoting text; they have small differences and they are aimed for different types of quotations. All of them are indented on either margin, and you will need to add your own quotation marks if you want them. The provided environments are:

quote
for a short quotation, or a series of small quotes, separated by blank lines.
quotation
for use with longer quotations, of more than one paragraph, because it indents the first line of each paragraph.
verse
is for quotations where line breaks are important, such as poetry. Once in, new stanzas are created with a blank line, and new lines within a stanza are indicated using the newline command, \\. If a line takes up more than one line on the page, then all subsequent lines are indented until explicitly separated with \\.

Abstracts[edit]

In scientific publications it is customary to start with an abstract which gives the reader a quick overview of what to expect. See Document Structure.

Notes and References[edit]

This page uses material from Andy Roberts' Getting to grips with LaTeX with permission from the author.


Colors[edit]

Adding colors to your text is supported by the xcolor package (supersedes package color). Using this package, you can set the font color, text background, or page background. You can choose from predefined colors or define your own colors using RGB, Hex, or CMYK. Mathematical formulas can also be colored.

Adding the xcolor package[edit]

To make use of these features, the xcolor package must be imported.

\usepackage{xcolor}

The package has some options to get more predefined colors, which should be added globally. usenames allows you to use names of the default colors, the same 16 base colors as used in HTML. The dvipsnames allows you access to more colors, another 64, and svgnames allows access to about 150 colors. The initialization of "table" allows colors to be added to tables by placing the color command just before the table.

If you need more colors, then you may also want to look at the x11names option. This offers more than 300 colors.

Entering colored text[edit]

The simplest way to type colored text is by:

\textcolor{declared-color}{text}

where declared-color is a color that was defined before by \definecolor.

Another possible way by

{\color{declared-color}some text}

that will switch the standard text color to the color you want. It will work until the end of the current TeX group. For example:

\emph{some black text, \color{red}followed by a red fragment}, going black again.

LaTeX colour demo 1.png

The difference between \textcolor and \color is the same as that between \texttt and \ttfamily, you can use the one you prefer. The \color environment allows the text to run over multiple lines and other text environments whereas the text in \textcolor must all be one paragraph and not contain other environments.

You can change the background color of the whole page by:

\pagecolor{declared-color}

Entering colored background for the text[edit]

\colorbox{declared-color}{text}

If the background color and the text color is changed, then:

\colorbox{declared-color1}{\color{declared-color2}text}

There is also \fcolorbox to make framed background color in yet another color:

\fcolorbox{declared-color-frame}{declared-color-background}{text}

Predefined colors[edit]

The predefined color names are

black, blue, brown, cyan, darkgray, gray, green, lightgray, lime, magenta, olive, orange, pink, purple, red, teal, violet, white, yellow.

There may be other pre-defined colors on your system, but these should be available on all systems.

If you would like a color not pre-defined, you can use one of the 68 dvips colors, or define your own. These options are discussed in the following sections

The 68 standard colors known to dvips[edit]

Invoke the package with the usenames and dvipsnames option. If you are using tikz or pstricks package you must declare the xcolor package before that, otherwise it will not work.

\usepackage[dvipsnames]{xcolor}

This above syntax may result in an error if you are using beamer with tikz. To go around it, include usenames and dvipsnames options when defining the document class.

\documentclass[usenames,dvipsnames]{beamer}
Name Color   Color Name
Apricot       Aquamarine
Bittersweet       Black
Blue       BlueGreen
BlueViolet       BrickRed
Brown       BurntOrange
CadetBlue       CarnationPink
Cerulean       CornflowerBlue
Cyan       Dandelion
DarkOrchid       Emerald
ForestGreen       Fuchsia
Goldenrod       Gray
Green       GreenYellow
JungleGreen       Lavender
LimeGreen       Magenta
Mahogany       Maroon
Melon       MidnightBlue
Mulberry       NavyBlue
OliveGreen       Orange
OrangeRed       Orchid
Peach       Periwinkle
PineGreen       Plum
ProcessBlue       Purple
RawSienna       Red
RedOrange       RedViolet
Rhodamine       RoyalBlue
RoyalPurple       RubineRed
Salmon       SeaGreen
Sepia       SkyBlue
SpringGreen       Tan
TealBlue       Thistle
Turquoise       Violet
VioletRed       White
WildStrawberry       Yellow
YellowGreen       YellowOrange

Defining new colors[edit]

If the predefined colors are not adequate, you may wish to define your own.

Place[edit]

Define the colors in the preamble of your document. (Reason: do so in the preamble, so that you can already refer to them in the preamble, which is useful, for instance, in an argument of another package that supports colors as arguments, such as the listings package.)

Method[edit]

You need to include the xcolor package in your preamble to define new colors. In the abstract, the colors are defined following this scheme:

\definecolor{name}{model}{color-spec}

where:

  • name is the name of the color; you can call it as you like
  • model is the way you describe the color, and is one of gray, rgb, RGB, HTML, and cmyk.
  • color-spec is the description of the color

Color Models[edit]

Among the models you can use to describe the color are the following (several more are described in the xcolor manual):

Color Models
Model Description Color Specification Example
gray Shades of gray
(0-1)
Just one number between 0 (black) and 1 (white), so 0.95 will be very light gray, 0.30 will be dark gray. \definecolor{light-gray}{gray}{0.95}
rgb Red, Green, Blue
(0-1)
Three numbers given in the form red,green,blue; the quantity of each color is represented with a number between 0 and 1. \definecolor{orange}{rgb}{1,0.5,0}
RGB Red, Green, Blue
(0-255)
Three numbers given in the form red,green,blue; the quantity of each color is represented with a number between 0 and 255. \definecolor{orange}{RGB}{255,127,0}
HTML Red, Green, Blue
(00-FF)
Six hexadecimal numbers given in the form RRGGBB; similar to what is used in HTML. \definecolor{orange}{HTML}{FF7F00}
cmyk Cyan, Magenta, Yellow, Black
(0-1)
Four numbers given in the form cyan,magenta,yellow,black; the quantity of each color is represented with a number between 0 and 1. \definecolor{orange}{cmyk}{0,0.5,1,0}

Examples[edit]

To define a new color, follow the following example, which defines orange for you, by setting the red to the maximum, the green to one half (0.5), and the blue to the minimum:

\definecolor{orange}{rgb}{1,0.5,0}

The following code should give a similar results to the last code chunk.

\definecolor{orange}{RGB}{255,127,0}

If you loaded the xcolor package, you can define colors upon previously defined ones.

The first specifies 20 percent blue and 80 percent white; the second is a mixture of 20 percent blue and 80 percent black; and the last one is a mixture of (20*0.3) percent blue, ((100-20)*0.3) percent black and (100-30) percent green.

\color{blue!20}
\color{blue!20!black}
\color{blue!20!black!30!green}

xcolor also feature a handy command to define colors from color mixes:

\colorlet{notgreen}{blue!50!yellow}

Using color specifications directly[edit]

Normally one would predeclare all the colors as above, but sometimes it is convenient to directly use a color without naming it first. To achieve this, \color and \textcolor have an alternative syntax specifying the model in square brackets, and the color specification in curly braces. For example:

{\color[rgb]{1,0,0} This text will appear red-colored}
\textcolor[rgb]{0,1,0}{This text will appear green-colored}

Creating / Capturing colors[edit]

You may want to use colors that appear on another document, web pages, pictures, etc. Alternatively, you may want to play around with rgb values to create your own custom colors.

Image processing suites like the free GIMP suite for Linux/Windows/Mac offer color picker facilities to capture any color on your screen or synthesize colors directly from their respective rgb / hsv / hexadecimal values.

Smaller, free utilities also exist:

Spot colors[edit]

Spot colors are customary in printing. They usually refer to pre-mixed inks based on a swatchbook (like Pantone, TruMatch or Toyo). The package colorspace extends xcolor to provide real spot colors (CMYK and CIELAB). They are defined with, say:

\definespotcolor{mygreen}{PANTONE 7716 C}{.83, 0, .40, .11}

Sources[edit]


Fonts[edit]

Font families[edit]

There are hundreds - if not thousands - of typefaces, or font families. Common examples include Times, Courier, and Helvetica. These families can generally be grouped into three main categories: serif, sans serif, and monospaced. LaTeX commands generally refer to these with the shorthand rm, sf, and tt respectively.

By default, LaTeX uses Computer Modern, a family of typefaces designed by Donald Knuth for use with TeX. It contains serif, sans serif, and monospaced fonts, each available in several weights and optical sizes.

The bodies of LaTeX documents are set in Roman (serif) type by default, but this can be changed by setting the family default:

\renewcommand{\familydefault}{<family>}

where <family> is any of the following:

  • \rmdefault
  • \sfdefault
  • \ttdefault

Emphasizing text[edit]

In order to add some emphasis to a word or a phrase, use the \emph{text} command, which usually italicizes the text. Italics may be specified explicitly with \textit{text}.

I want to \emph{emphasize} a word.

I want to emphasize a word.

Note that the \emph command is dynamic: if you emphasize a word which is already in an emphasized sentence, it will be reverted to the upright font.

\emph{In this emphasized sentence, there is an emphasized \emph{word} which looks upright.}

In this emphasized sentence, there is an emphasized word which looks upright.

Text may be emphasized more heavily through the use of boldface, particularly for keywords the reader may be trying to find when reading the text. As bold text is generally read before any other text in a paragraph or even on a page, it should be used sparingly. It may also be used in place of italics when using sans-serif typefaces to provide a greater contrast with unemphasized text. Bold text can be generated with the \textbf{text} command.

\textbf{Bold text} may be used to heavily emphasize very important words or phrases.

Bold text may be used to heavily emphasize very important words or phrases.

Font styles[edit]

Typefaces usually come in various styles and weights, such as italic and bold. The following table lists the commands you will need to access typical font shapes.

Note: Paragraph breaks are not allowed inside the command forms.

LaTeX command Equivalent switch Output style Remarks
\textnormal{...} {\normalfont ...} document font family This is the default or normal font.
\emph{...} {\em ...} emphasis Typically italics. Using emph{} inside of italic text removes the italics on the emphasized text.
\textrm{...} {\rmfamily ...} roman font family
\textsf{...} {\sffamily ...} sans serif font family
\texttt{...} {\ttfamily ...} teletypefont family This is a fixed-width or monospace font.
\textup{...} {\upshape ...} upright shape The same as the normal typeface.
\textit{...} {\itshape ...} italic shape
\textsl{...} {\slshape ...} slanted shape A skewed version of the normal typeface (similar to, but slightly different from, italics).
\textsc{...} {\scshape ...} Small Capitals
\uppercase{...} uppercase (all caps) Also \lowercase. There are some caveats, though; see here.
\textbf{...} {\bfseries ...} bold
\textmd{...} {\mdseries ...} medium weight The normal font weight.
\textlf{...} {\lfseries ...} light A font weight lighter than normal. Not supported by all typefaces.

Generally, one should prefer the commands over their equivalent switches because the former automatically corrects spacing immediately following the end of the selected style.

You may have noticed the absence of underline - this is because underlining is a byproduct of the typewriter era, and is not recommended when bold and italic type is available instead.[2] However, underlining can be useful in some cases, such as to draw attention to changes during editing. Although underlining is available via the \underline{...} command, text underlined in this way will not break properly. Instead, use the \ul{...} command from the soul package or \uline{...} command from the ulem (underline emphasis) package. By default, the latter package also overrides \emph to underline instead of italicize the text. In the likely case that this is not your intent, use the normalem option, i.e. \usepackage[normalem]{ulem}. Both packages also provide strikethrough text with \st{...} or \sout{...}, respectively.

Sizing text[edit]

Built-in sizes[edit]

To scale text relative to the default body text size, use the following commands:

Command Output
\tiny sample text
\scriptsize sample text
\footnotesize sample text
\small sample text
\normalsize sample text
\large sample text
\Large sample text
\LARGE sample text
\huge sample text
\Huge sample text

These commands change the size within a given scope. For instance {\Large some words} will change the size of only some words, and does not affect the font in the rest of the document. It will work for most parts of the text.

{\Large\tableofcontents}

These commands cannot be used in math mode. However, part of a formula may be set in a different size by using an \mbox command containing the size command. The new size takes effect immediately after the size command; if an entire paragraph or unit is set in a certain size, the size command should include the blank line or the \end{...} which delimits the unit.

By default, \normalsize is 10 points, but this can be changed in the \documentclass declaration, e.g. \documentclass[12pt]{article}. Note that not every document class has unique sizes for all of the above size commands.


Absolute Point Sizes
size standard classes (except slides), beamer AMS classes, memoir slides
[10pt] [11pt] [12pt] [10pt] [11pt] [12pt]
\tiny 5 6 6 6 7 8 13.82
\scriptsize 7 8 8 7 8 9 16.59
\footnotesize 8 9 10 8 9 10 16.59
\small 9 10 10.95 9 10 10.95 16.59
\normalsize 10 10.95 12 10 10.95 12 19.907
\large 12 12 14.4 10.95 12 14.4 23.89
\Large 14.4 14.4 17.28 12 14.4 17.28 28.66
\LARGE 17.28 17.28 20.74 14.4 17.28 20.74 34.4
\huge 20.74 20.74 24.88 17.28 20.74 24.88 41.28
\Huge 24.88 24.88 24.88 20.74 24.88 24.88 41.28

Points in TeX follow the standard American point system in which 1 pt is approximately 0.35136 mm. The standard point size used in most modern computer programs (known as the desktop publishing point or PostScript point) has 1 pt equal to approximately 0.3527 mm while the standard European point size (known as the Didot point) had 1 pt equal to approximately 0.37597151 mm (see: point (typography)).

Arbitrary sizes[edit]

The \tiny...\Huge commands are often enough for your needs, but you may occasionally want an arbitrary font size.This is done with \fontsize{<size>}{<line space>}\selectfont. For example:

\fontsize{5cm}{5.5cm}\selectfont

sets the current font size to 5cm with 5.5 centimeter leading.

If you are using the latex or pdflatex engines, you may get a warning similar to the following:

LaTeX Font Warning: Font shape `OT1/cmr/m/n' in size <142.26378> not available
(Font)              size <24.88> substituted on input line 103.

This is because these older engines only support a fixed set of sizes - between 5 and 17 point. When he designed Computer Modern, Knuth created individual font files for these sizes, each with stroke widths and spacing optimized for that particular size. To avoid distorting them, scaling these fonts is disabled by default.

This issue is avoided when using lualatex or xelatex, which use Latin Modern - a vectorized version of Computer Modern - as the default font family. This still provides individual files at each of the original optical sizes, but will automatically scale the closest one when asked for an arbitrary size.

Using alternative fonts[edit]

When TeX was originally designed in the late 1970s, vector-based fonts didn't exist in any common format - PostScript wouldn't be released until 1982. Consequently, TeX was designed to use its own font system, METAFONT. Over time, TeX (and LaTeX) were extended to support PostScript fonts, and modern LaTeX engines also support the TrueType (TTF) and OpenType (OTF) fonts found on modern systems.

Using TTF and OTF fonts[edit]

If you are using lualatex or xelatex, you can use TTF and OTF fonts with the fontspec package:

\documentclass{article}

\usepackage{fontspec}
\setmainfont[Ligatures=TeX]{Georgia}
\setsansfont[Ligatures=TeX]{Arial}

\begin{document}
Lorem ipsum...
\end{document}

The [Ligatures=TeX] option allows you to use the standard TeX ligatures mentioned in the Text Formatting chapter instead of Unicode characters that are unlikely to be on your keyboard. For example, --- can be used to create em dashes (—), quotes can be typed ``like this'' instead of “like this”, and so on.

The fontspec package is extremely configurable. See the manual[3] for details, but some basics are covered below.

Selecting font files[edit]

Different weights and styles of a given typeface are usually stored as separate font files. A typical typeface might offer four files to represent its normal weight, italics, bold, and bold italics. Given a typefaces's name, fontspec can generally deduce the names of the individual files. However, many typefaces come in more than two weights—some versions of Futura, for example, comes in light, book, medium, demi, bold, and extra bold weights. Sometimes small caps are stored as separate files as well.

We might want to hand-pick weights to achieve a certain look or better match the weights of other fonts in our document. Continuing to use Futura as an example, say we want to use the "book" weight for our default weight, "demi" for bold, and the font files are named:

  • Futura-Boo for upright book weight
  • Futura-BooObl for oblique book weight
  • FuturaSC-Boo for small caps, book weight
  • Futura-Dem for upright demi(bold)
  • Futura-DemObl for oblique demibold

Our font setup might resemble:

\usepackage{fontspec}
\setmainfont[
    Ligatures=TeX,
    UprightFont = *-Boo,
    ItalicFont = *-BooObl,
    SmallCapsFont = *SC-Boo,
    BoldFont = *-Dem,
    BoldItalicFont = *-DemObl
]{Futura}

Note that instead of typing out Futura-Boo, Futura-BooObl, and so on, we can use * to insert the base name.

Controlling font features[edit]

The OpenType (OTF) format allows type designers to embed font features that can be turned on and off, such as:

  • Alternate versions of glyphs
  • Lining and "oldstyle" figures, each with tabular and proportional spacing[4]
  • Up to three sets of ligatures: standard, contextual, and historical
  • Superscript and subscript glyphs
  • Small caps (in the same file as the standard upper and lowercase characters)

All of these features can be turned on and off using different fontspec options. If we wanted to set our body text in Linux Libertine with oldstyle, proportionally-spaced figures, for example, we might set up our fonts as follows:

\setmainfont[
    Ligatures=TeX,
    Numbers={OldStyle, Proportional}
]{Linux Libertine}

Features can be turned on and off using \addfontfeatures{...}. Say you wanted to set a table in lining, tabular figures:

{\addfontfeatures{Numbers={Lining, Tabular}}
    \begin{tabular}{l r}
        Widgets: & 25 \\
        Gadgets: & 6 \\
        Whatsits & 24 \\
    \end{tabular}
} % Return to previous figure style

Changing fonts in latex and pdflatex[edit]

If you are not using one of the Unicode-aware engines, font selection is more complicated. (See the discussion of encoding below.) Useful resources for latex and pdflatex font configuration include:

Font encoding[edit]

Digitising human language is a complicated topic that has evolved significantly since TeX's inception.

Unicode[edit]

Today, text is usually represented in computer systems using Unicode. Briefly,

  • A Unicode text file is made of a series of code points, each of which can represent a character to be drawn, an accent or other diacritical mark to combine with an adjacent character, or some non-printing character, such as instruction to print subsequent text right-to-left.
  • One or more of these code points combines to represent a grapheme cluster or glyph, the shapes within a font that we informally call "characters".
  • Modern font formats such as TrueType and OpenType contain encoding tables which map code points to the glyphs the font file contains.

LuaLaTeX and XeLaTeX use these tools to render Unicode-encoded input files (LuaLaTeX accepts UTF-8 files, while XeLaTeX is a bit more flexible and also accepts UTF-16 and UTF-32) into PDF documents.

TeX encodings[edit]

The original TeX and LaTeX, designed long before the advent of Unicode, use a very different scheme. When using latex or pdflatex, you must choose an input encoding, which the engine uses to interpret your file, and an output encoding, which the engine uses to map your inputs to glyphs. The default font encoding is OT1, the encoding of the original Computer Modern fonts. It contains only 128 characters, many from ASCII, but leaving out some others and including a number that are not in ASCII. When accented characters are required, TeX creates them by combining a normal character with an accent. While the resulting output looks correct, this approach has some caveats compared to Unicode-based approaches:

  • It prevents automatic hyphenation from working inside words containing accented characters.
  • Searches for words with accents in PDFs will fail.
  • Extracting (e.g., via copy-paste) the umlaut 'Ä' via a PDF viewer actually extracts the two characters '"A'.
  • Some Latin letters cannot be created with this approach, to say nothing about letters of non-Latin alphabets such as Greek or Cyrillic.

To overcome these shortcomings, several other 8-bit output encodings were created. Extended Cork (EC) fonts in T1 encoding contains letters and punctuation characters for most European languages that use Latin alphabets. The LH font set contains letters necessary to typeset documents in languages using Cyrillic script. Because of the large number of Cyrillic glyphs, they are arranged into four font encodings—T2A, T2B, T2C, and X2. The CB bundle contains fonts in LGR encoding for the composition of Greek text. By using these fonts you can improve/enable hyphenation in non-English documents. Another advantage of using new CM-like fonts is that they provide fonts of CM families in all weights, shapes, and optically scaled font sizes.

All this is not possible with OT1; that's why you may want to change the font encoding of your document.

Note that different fonts support different output encodings. The default Computer Modern font does not support T1, for example. You will need Computer Modern Super (cm-super) or Latin Modern (lmodern), which are Computer Modern-like fonts with T1 support. If you have none of these, it is quite frequent (depends on your TeX installation) that tex chooses a Type3 font such as the Type3 EC, which is a bitmap font. Bitmap fonts look rather ugly when zoomed or printed.

The fontenc package tells LaTeX what font encoding to use. Font encoding is set with:

\usepackage['encoding']{fontenc}

where encoding is the font encoding. It is possible to load several encodings simultaneously.

There is nothing to change in your document to use CM Super fonts (assuming they are installed), they will get loaded automatically if you use T1 encoding. For lmodern, you will need to load the package after the T1 encoding has been set:

\usepackage[T1]{fontenc}
\usepackage{lmodern}

The package ae (almost European) is obsolete. It provided some workarounds for hyphenation of words with special characters. These are not necessary any more with fonts like lmodern. Using the ae package leads to text encoding problems in PDF files generated via pdflatex (e.g. text extraction and searching), besides typographic issues.

PDF fonts and properties[edit]

PDF documents have the capability to embed font files. It makes them portable, hence the name Portable Document Format.

Many PDF viewers have a Properties feature to list embedded fonts and document metadata.

Many Unix systems make use of the poppler tool set which features pdfinfo to list PDF metadata, and pdffonts to list embedded fonts.

References[edit]

List Structures[edit]

Convenient and predictable list formatting is one of the many advantages of using LaTeX. Users of WYSIWYG word processors can sometimes be frustrated by the software's attempts to determine when they intend lists to begin and end. As a mark-up language, LaTeX gives more control over the structure and content of lists.

List structures[edit]

Lists often appear in documents, especially academic, as their purpose is often to present information in a clear and concise fashion. List structures in LaTeX are simply environments which essentially come in three types:

  • itemize for a bullet list
  • enumerate for an enumerated list and
  • description for a descriptive list.

All lists follow the basic format:

\begin{list_type}  
\item The first item 
\item The second item 
\item The third etc \ldots 
\end{list_type}

All three of these types of lists can have multiple paragraphs per item: just type the additional paragraphs in the normal way, with a blank line between each. So long as they are still contained within the enclosing environment, they will automatically be indented to follow underneath their item.


Try out the examples below, to see what the lists look like in a real document.

\documentclass{article}
\usepackage{blindtext}
\begin{document}
\begin{itemize}
\item \blindtext
\item \blindtext
\end{itemize}
\begin{enumerate}
\item \blindtext
\item \blindtext
\end{enumerate}
\begin{description}
\item [Ant] \blindtext
\item [Elephant] \blindtext
\end{description}
\end{document}
Sample output of lists in LaTeX. Itemize, enumerate, and description.


LaTeX will happily allow you to insert a list environment into an existing one (up to a depth of four, more levels are available using packages). Simply begin the appropriate environment at the desired point within the current list. Latex will sort out the layout and any numbering for you.

\begin{enumerate}
\item The first item
\begin{enumerate}
\item Nested item 1
\item Nested item 2
\end{enumerate}
\item The second item
\item The third etc \ldots
\end{enumerate}

Nested.svg

Some special lists[edit]

Sometimes you feel the need to better align the different list items. If you are using a KOMA-script class (or package scrextend), the labeling environment is handy. It takes a mandatory argument that contains the longest of your labels.

\documentclass[twocolumn]{article}
\usepackage{blindtext}
\usepackage{scrextend}
\addtokomafont{labelinglabel}{\sffamily}
\begin{document}
\blindtext
\begin{labeling}{alligator}
\item [ant] really busy all the time
\item [chimp] likes bananas
\item [alligator] very dangerous animal, sharp teeth, long
muscular tail and a bit of text that is longer than one
line and shows the alignment of text quite nicely
\end{labeling}
\end{document}

WikibookListsLabeling.png


If you are on tight space limitations and only have short item descriptions, you may want to have the list inline. Please note that the example also shows how to change the font.

\documentclass[twocolumn]{article}
\usepackage{blindtext}
\usepackage[inline]{enumitem}
\usepackage{xcolor}
\begin{document}
\blindtext Coco likes fruit. Her favorites are:
\begin{enumerate*}[label={\alph*)},font={\color{red!50!black}\bfseries}]
\item bananas
\item apples
\item oranges and
\item lemons.
\end{enumerate*}
\blindtext
\end{document}

WikibooksListsInline.png



If you want a horizontal list, package tasks can be handy. In combination with a package like exsheets, you can prepare exam papers for students.

\documentclass[12pt]{article}
\usepackage{tasks}
\usepackage{exsheets}
\SetupExSheets[question]{type=exam}
\begin{document}
\begin{question}
	Which one of the entries does not fit with the others?
	\begin{tasks}(4)
		\task mercury
		\task iron
		\task lead
		\task zinc
	\end{tasks}
\end{question}
\settasks{
	counter-format=(tsk[r]),
	label-width=4ex
}
\begin{question}
	What is a funkyton?
	\begin{tasks}(2)
		\task A dancing electron
		\task A dancing proton
		\task A dancing neutron
		\task A Dixie Dancing Duck
	\end{tasks}
\end{question}
\end{document}

WikibooksListsTask.png

Customizing lists[edit]

When dealing with lists containing just a few words per item, the standard lists often take up too much space. Package enumitem provides you a simple interface to customize the appearance of lists.

You can change the appearance of lists globally in the preamble, or just for single lists using the optional argument of the environment. Have a look at the following example where the list on the right is more compact using noitemsep.

\documentclass[twocolumn]{article}
\usepackage{blindtext}
\usepackage{enumitem}
\begin{document}
\blindtext
\begin{itemize}
\item more work
\item more responsibility
\item more satisfaction
\end{itemize}
\blindtext
\newpage
\blindtext
\begin{itemize}[noitemsep]
\item more work
\item more responsibility
\item more satisfaction
\end{itemize}
\blindtext
\end{document}

WikibookListsCompact.png

An example for alignment and the width of the label.

\documentclass[twocolumn]{article}
\usepackage{blindtext}
\usepackage{enumitem}
\begin{document}
\blindtext Coco likes fruit. Her favourites are:
\begin{description}[align=left]
\item [Kate] some detail
\item [Christina]some detail
\item [Laura]some detail
\end{description}
\begin{description}[align=right]
\item [Kate] some detail
\item [Christina]some detail
\item [Laura]some detail
\end{description}
\begin{description}[align=right,labelwidth=3cm]
\item [Kate] some detail
\item [Christina]some detail
\item [Laura]some detail
\end{description}
\blindtext
\end{document}

WikibookListsCustom.png

The documentation of package enumitem goes into more detail with respect to what can be changed and how. You can even define your own lists. Environments like labeling and tasks can be changed differently, details can be found in the package documentation respectively.

Easylist package[edit]

The easylist package allows you to create list using a more convenient syntax and with infinite nested levels. It is also very customizable.

Load the package with the control character as optional argument:

\usepackage[ampersand]{easylist}

The easylist environment will default to enumerations.

\begin{easylist}
& Main item~:
&& Sub item.
&& Another sub item.
\end{easylist}

It features predefined styles which you can set as optional argument.

\begin{easylist}[itemize]
% ...
\end{easylist}

Available styles:

  • tractatus
  • checklist - All items have empty check boxes next to them
  • booktoc - Approximately the format used by the table of contents of the book class
  • articletoc - Approximately the format used by the table of contents of the article class
  • enumerate - The default
  • itemize

You can customize lists with the \ListProperties(...) command and revert back the customization with \NewList. Yes, that's parentheses for \ListProperties parameters.

The Style parameter sets the style of counters and text, the Style* parameter sets the style of counters, and the Style** parameter sets the style of text. The parameter Numbers determines the way that the numbers are displayed and the possible values are r or R (for lower and upper case Roman numerals), l or L (for lower and upper case letters), a (for Arabic numbers, the default), and z (for Zapf's Dingbats).

The FinalMark parameter sets the punctuation of the final counter (Ex: FinalMark3={)}) while FinalSpace sets the amount of space between the item and the item's text. The Margin parameter sets the distance from the left margin (Ex: FinalSpace2=1cm). The Progressive parameter sets the distance from the left margin of all items in proportion to their level.

The Hide = n parameter prevents the first n counters from appearing in all levels. If there is a number after a parameter (Ex: Style3*) then this numbers indicates the level that it will affect (Ex: Style3=\color{red}).

Example of custom enumerate:

\begin{easylist}[enumerate]
\ListProperties(Style2*=,Numbers=a,Numbers1=R,FinalMark={)})
& Main item~:
&& Sub item.
&& Another sub item.
\end{easylist}

Note that we put the FinalMark argument between {} to avoid LaTeX understanding it as the end of the properties list. Now we change the default properties to print a custom itemize:

\usepackage{amssymb}
\ListProperties(Hide=100, Hang=true, Progressive=3ex, Style*=-- ,
Style2*=$\bullet$ ,Style3*=$\circ$ ,Style4*=\tiny$\blacksquare$ )
% ...

\begin{easylist}
& Blah
& Blah
&& Blah
&&& Blah
&&&& Blah
&&&&& Blah
\end{easylist}

– Blah
  '"`UNIQ--postMath-00000004-QINU`"' Blah
   '"`UNIQ--postMath-00000005-QINU`"' Blah
    '"`UNIQ--postMath-00000006-QINU`"' Blah
     – Blah

Spaces in Style parameters are important. The Style* parameter acts as a default value and easylist will use a medium dash for level 1, 5 and onward.

You can also define custom styles using LaTeX macros:

\newcommand\myitemize{\ListProperties(Hide=100, Hang=true, Progressive=3ex, Style*=$\star$ )}
\newcommand\myenumerate{\ListProperties(Space=2\baselineskip)}

% ...
\begin{easylist} \myitemize
& Blah
\end{easylist}

Important note: easylist has some drawbacks. First if you need to put an easylist inside an environment using the same control character as the one specified for easylist, you may get an error. To circumvent it, use the following commands provided by easylist:

\Activate
\begin{easylist}
& ...
\end{easylist}
\Deactivate

Besides using easylist along with figures may cause some trouble to the layout and the indentation. LaTeX lists do not have this problem.

To use easylist with Beamer, each frame that uses easylist must be marked as fragile:

\begin{frame}[fragile]
...
\begin{easylist}[itemize]
...
\end{easylist}
...
\end{frame}

Special Characters[edit]

In this chapter we will tackle matters related to input encoding, typesetting diacritics and special characters.

In the following document, we will refer to special characters for all symbols other than the lowercase letters a–z, uppercase letters A-Z, figures 0–9, and English punctuation marks.

Some languages usually need a dedicated input system to ease document writing. This is the case for Arabic, Chinese, Japanese, Korean and others. This specific matter will be tackled in Internationalization.

The rules for producing characters with diacritical marks, such as accents, differ somewhat depending whether you are in text mode, math mode, or the tabbing environment.

Input encoding[edit]

TeX uses ASCII by default. But 128 characters is not enough to support non-English languages. TeX has its own way to do that with commands for every diacritical marking (see Escaped codes). But if we want accents and other special characters to appear directly in the source file, we have to tell TeX that we want to use a different encoding.

There are several encodings available to LaTeX:

  • ASCII: the default. Only bare English characters are supported in the source file.
  • ISO-8859-1 (a.k.a. Latin 1): 8-bits encoding. It supports most characters for latin languages, but that's it.
  • UTF-8: a Unicode multi-byte encoding. Supports the complete Unicode specification.
  • Others...

In the following we will assume you want to use UTF-8.

There are some important steps to specify encoding.

  • Make sure your text editor decodes the file in UTF-8.
  • Make sure it saves your file in UTF-8. Most text editors do not make the distinction, but some do, such as Notepad++.
  • If you are working in a terminal, make sure it is set to support UTF-8 input and output. Some old Unix terminals may not support UTF-8. PuTTY is not set to use UTF-8 by default, you have to configure it.
  • Tell LaTeX that the source file is UTF-8 encoded.
\usepackage[utf8]{inputenc}

inputenc [1] package tells LaTeX what the text encoding format of your .tex files is.

The inputenc package allows as well the user to change the encoding within the document by means of the command \inputencoding{'encoding name'}.

\usepackage[utf8]{inputenc}
% ...
% In this area
% The UTF-8 encoding is specified.
% ...
\inputencoding{latin1}
% ...
% Here the text encoding is specified as ISO Latin-1.
% ...
\inputencoding{utf8}
% Back to the UTF-8 encoding.
% ...

Extending the support[edit]

The LaTeX support of UTF-8 is fairly specific: it includes only a limited range of Unicode input characters. It only defines those symbols that are known to be available with the current font encoding. You might encounter a situation where using UTF-8 might result in error:

! Package inputenc Error: Unicode char \u8:ũ not set up for use with LaTeX.

This is due to the utf8 definition not necessarily having a mapping of all the character glyphs you are able to enter on your keyboard. Such characters are for example

ŷ Ŷ ũ Ũ ẽ Ẽ ĩ Ĩ

In such case, you may try to use the utf8x option to define more character combinations. utf8x is not officially supported, but can be viable in some cases. However it might break up compatibility with some packages like csquotes.

Another possiblity is to stick with utf8 and to define the characters yourself. This is easy:

\DeclareUnicodeCharacter{'codepoint'}{'TeX sequence'}

where codepoint is the unicode codepoint of the desired character. TeX sequence is what to print when the character matching the codepoint is met. You may find codepoints on this site. Codepoints are easy to find on the web. Example:

\DeclareUnicodeCharacter{0177}{\^y}

Now inputting 'ŷ' will effectively print 'ŷ'.

Escaped codes[edit]

In addition to direct UTF-8 input, LaTeX supports the composition of special characters. This is convenient if your keyboard lacks some desired accents and other diacritics.

The following accents may be placed on letters. Although 'o' letter is used in most of the examples, the accents may be placed on any letter. Accents may even be placed above a "missing" letter; for example, \~{} produces a tilde over a blank space.

The following commands may be used only in paragraph (default) or LR (left-right) mode.

LaTeX command Sample Description
\`{o} ò grave accent
\'{o} ó acute accent
\^{o} ô circumflex
\"{o} ö umlaut, trema or dieresis
\H{o} ő long Hungarian umlaut (double acute)
\~{o} õ tilde
\c{c} ç cedilla
\k{a} ą ogonek
\l{} ł barred l (l with stroke)
\={o} ō macron accent (a bar over the letter)
\b{o} o bar under the letter
\.{o} ȯ dot over the letter
\d{u} dot under the letter
\r{a} å ring over the letter (for å there is also the special command \aa)
\u{o} ŏ breve over the letter
\v{s} š caron/háček ("v") over the letter
\t{oo} o͡o "tie" (inverted u) over the two letters
\o ø slashed o (o with stroke)

To place a diacritic on top of an i or a j, its dot has to be removed. The dotless version of these letters is accomplished by typing \i and \j. For example:

  • \^{\i} should be used for i circumflex 'î';
  • \"{\i} should be used for i umlaut 'ï'.

If a document is to be written completely in a language that requires particular diacritics several times, then using the right configuration allows those characters to be written directly in the document. For example, to achieve easier coding of umlauts, the babel package can be configured as \usepackage[german]{babel}. This provides the short hand "o for \"o. This is very useful if one needs to use some text accents in a label, since no backslash will be accepted otherwise.

More information regarding language configuration can be found in the Internationalization section.

Less than < and greater than >[edit]

The two symbols '<' and '>' are actually ASCII characters, but you may have noticed that they will print '¡' and '¿' respectively. This is a font encoding issue. If you want them to print their real symbol, you will have to use another font encoding such as T1, loaded with the fontenc package. See Fonts for more details on font encoding.

Alternatively, they can be printed with dedicated commands:

\textless
\textgreater

Euro currency symbol[edit]

When writing about money these days, you need the euro sign. The textcomp package features a \texteuro command which gives you the euro symbol as supplied by your current text font. Depending on your chosen font this may be quite far from the official symbol.

An official version of the euro symbol is provided by eurosym. Load it in the preamble (optionally with the official option):

\usepackage[official]{eurosym}

then you can insert it with the \euro{} command. Finally, if you want a euro symbol that matches with the current font style (e.g., bold, italics, etc.) you can use a different option:

\usepackage[gen]{eurosym}

again you can insert the euro symbol with \euro{}.

Alternatively you can use the marvosym package which also provides the official euro symbol.

\usepackage{marvosym}
% ...

\EUR{}

Now that you have succeeded in printing a euro sign, you may want the '€' on your keyboard to actually print the euro sign as above. There is a simple method to do that. You must make sure you are using UTF-8 encoding along with a working \euro{} or \EUR{}command.

\DeclareUnicodeCharacter{20AC}{\euro{}}
% or
\DeclareUnicodeCharacter{20AC}{\EUR{}}

Complete example:

\usepackage[utf8]{inputenc}
\usepackage{marvosym}
\DeclareUnicodeCharacter{20AC}{\EUR{}}

Degree symbol for temperature and math[edit]

The easiest way to print temperature and angle values is to use the \SI{value}{unit} command from the siunitx package, which works both in text and math mode:

\usepackage{amsmath}
\usepackage{siunitx}
%...

A $\SI{45}{\degree}$ angle.

It is \SI{17}{\degreeCelsius} outside.

For more information, see the documentation of the siunitx package.

A common mistake is to use the \circ command. It will not print the correct character (though $^\circ$ will). Use the textcomp package instead, which provides a \textdegree command.

\usepackage{textcomp}
%...

A $45$\textdegree angle.

For temperature, you can use the same command or opt for the gensymb package and write

\usepackage{gensymb}
\usepackage{textcomp}
%...

17\,\celsius % best (with textcomp)

Some keyboard layouts feature the degree symbol, you can use it directly if you are using UTF-8 and textcomp. For better results (font quality) we recommend the use of an appropriate font, like lmodern:

\usepackage[utf8]{inputenc}
\usepackage{lmodern}
\usepackage{textcomp}

% ...

17\,°C

17\,% best

Other symbols[edit]

LaTeX has many symbols at its disposal. The majority of them are within the mathematical domain, and later chapters will cover how to get access to them. For the more common text symbols, use the following commands:

Command Sample Character
\% '"`UNIQ--postMath-00000007-QINU`"' %
\$ '"`UNIQ--postMath-00000008-QINU`"' $
\{ '"`UNIQ--postMath-00000009-QINU`"' {
\_ '"`UNIQ--postMath-0000000A-QINU`"' _
\P '"`UNIQ--postMath-0000000B-QINU`"'
\ddag n/a
\textbar n/a |
\textgreater '"`UNIQ--postMath-0000000C-QINU`"' >
\textendash n/a
\texttrademark n/a
\textexclamdown n/a ¡
\textsuperscript{a} '"`UNIQ--postMath-0000000D-QINU`"' a
\pounds n/a £
\# '"`UNIQ--postMath-0000000E-QINU`"' #
\& '"`UNIQ--postMath-0000000F-QINU`"' &
\} '"`UNIQ--postMath-00000010-QINU`"' }
\S '"`UNIQ--postMath-00000011-QINU`"' §
\dag n/a
\textbackslash n/a \
\textless '"`UNIQ--postMath-00000012-QINU`"' <
\textemdash n/a
\textregistered n/a ®
\textquestiondown n/a ¿
\textcircled{a} n/a
\copyright n/a ©

Not mentioned in above table, tilde (~) is used in LaTeX code to produce non-breakable space. To get printed tilde sign, either write \~{} or \textasciitilde{}. And a visible space can be created with \textvisiblespace.

For some more interesting symbols, the Postscript ZapfDingbats font is available thanks to the pifont package. Add the declaration to your preamble: \usepackage{pifont}. Next, the command \ding{number}, will print the specified symbol. Here is a table of the available symbols:

ZapfDingbats symbols.

In special environments[edit]

Math mode[edit]

Several of the above and some similar accents can also be produced in math mode. The following commands may be used only in math mode.

LaTeX command Sample Description Text-mode equivalence
\hat{o} '"`UNIQ--postMath-00000013-QINU`"' circumflex \^
\widehat{oo} '"`UNIQ--postMath-00000014-QINU`"' wide version of \hat over several letters
\check{o} '"`UNIQ--postMath-00000015-QINU`"' vee or check \v
\tilde{o} '"`UNIQ--postMath-00000016-QINU`"' tilde \~
\widetilde{oo} '"`UNIQ--postMath-00000017-QINU`"' wide version of \tilde over several letters
\acute{o} '"`UNIQ--postMath-00000018-QINU`"' acute accent \'
\grave{o} '"`UNIQ--postMath-00000019-QINU`"' grave accent \`
\dot{o} '"`UNIQ--postMath-0000001A-QINU`"' dot over the letter \.
\ddot{o} '"`UNIQ--postMath-0000001B-QINU`"' two dots over the letter (umlaut in text-mode) \"
\breve{o} '"`UNIQ--postMath-0000001C-QINU`"' breve \u
\bar{o} '"`UNIQ--postMath-0000001D-QINU`"' macron \=
\vec{o} '"`UNIQ--postMath-0000001E-QINU`"' vector (arrow) over the letter

When applying accents to letters i and j, you can use \imath and \jmath to keep the dots from interfering with the accents:

LaTeX command Sample Description Sample with upper dot
\hat{\imath} '"`UNIQ--postMath-0000001F-QINU`"' circumflex on letter i without upper dot '"`UNIQ--postMath-00000020-QINU`"'
\vec{\jmath} '"`UNIQ--postMath-00000021-QINU`"' vector (arrow) on letter j without upper dot '"`UNIQ--postMath-00000022-QINU`"'

Tabbing environment[edit]

Some of the accent marks used in running text have other uses in the tabbing environment. In that case they can be created with the following command:

  • \a' for an acute accent
  • \a` for a grave accent
  • \a= for a macron accent

Unicode keyboard input[edit]

Some operating systems provide a keyboard combination to input any Unicode code point, the so-called unicode compose key.

Many X applications (*BSD and GNU/Linux) support the Ctrl+Shift+u combination. A 'u' symbol should appear. Type the code point and press enter or space to actually print the character. Example:

<Ctrl+Shift+u> 20AC <space>

will print the euro character.

Desktop environments like GNOME and KDE may feature a customizable compose key for more memorizable sequences.

Xorg features advanced keyboard layouts with variants that let you enter a lot of characters easily with combination using the appropriate modifier, like Alt Gr. It highly depends on the selected layout+variant, so we suggest you to play a bit with your keyboard, preceeding every key and dead key with the Alt Gr modifier.

In Windows, you can hold Alt and type a <codepoint> to get a desired character. For example,

<Alt> + 0252

will print the German letter ü.

External links[edit]

Notes and References[edit]

  1. For a detailed information on the package, see complete specifications written by the package's authors.

Internationalization[edit]

LaTeX requires some additional configuration to typeset documents in languages other than English.

There are currently two packages providing international language support, namely, Polyglossia and Babel. Polyglossia works mainly with XeTeX (with partial support for LuaTeX), while Babel, which is being actively developed, works mainly with pdfTeX and LuaTeX (with partial support for XeTeX and experimental for Harftex). Both packages handle the following tasks:

  1. Loading the language-specific hyphenation patterns and other typographical conventions. Babel provides basic line breaking for CJK scripts (only LuaTeX).
  2. Setting the script and language tags of the current font, if possible. See the discussion of fontspec in the Fonts chapter.
  3. Switching between fonts for each language, as specified by the user (mainly XeTeX and LuaTeX).
  4. Translating document labels (like “chapter”, “figure”, “bibliography”).
  5. Formatting dates according to language-specific conventions.
  6. Formatting numbers for languages that have their own numbering system.
  7. Support for documents that contain bidirectional scripts. Polyglossia relies on the bidi package, which requires explicit markup to change the direction, while Babel uses an alternative approach, based on the Unicode algorithm, which changes the direction automatically (only LuaTeX), although bidi is also available (only XeTeX, and somewhat tentative).

Encodings[edit]

When using any language, LaTeX must handle two fundamental problems:

  1. Mapping the bytes of your input file into the characters of the language(s) you want to use.
  2. Mapping those characters to their glyphs in the fonts your document uses.

When using the xelatex or lualatex engines, many of these problems are solved for you. Input files are assumed to be UTF-8 (XeLaTeX also accepts UTF-16 and UTF-32), and the engine automatically maps Unicode characters to their glyphs in the TrueType or OpenType fonts you selected for your document. (This is, of course, assuming those fonts contain the glyphs you need, so you must ensure that your fonts support the languages you are using.)

When using the latex or pdflatex engines, you must tell LaTeX which encoding to use for your input files, and what "output" encoding it should use to map characters to their glyphs in the fonts. In most cases (especially for multilingual documents), UTF-8 is an optimal input encoding, and can set using:

\usepackage[utf8]{inputenc}

UTF-8 is currently the default encoding in LaTeX.

For most Latin languages, T1 is the desired output encoding, and can be set with:

\usepackage[T1]{fontenc}

Other output encodings for specific languages are shown below.

For additional information, see the discussion of encoding in the Fonts chapter, as well as the Special Characters chapter.

Polyglossia[edit]

When using XeLaTeX or LuaLaTeX, the polyglossia package provides international language support, as described in its manual.

To use polyglossia, load it in your preamble and specify the languages you will be using, along with any language-specific options you wish. For example, in a document that contains American English and French, we might use:

\usepackage{polyglossia}
\setdefaultlanguage[variant=american]{english}
\setotherlanguage{french}

Babel[edit]

When using the latex and pdflatex engines, as well as LuaLaTeX and XeLaTeX in many languages, internationalization is provided by the babel package. The are two ways to specify the document languages. One of them is as arguments to the package when it is loaded:

\usepackage[language]{babel}

Another approach is making the language a global option in order to let other packages detect and use it:

\documentclass[language]{article}
\usepackage{babel}

Finally, babel provides total or partial support for about 200 languages with a set of ini files, which are accessed with \babelprovide. This command can be used to define easily your own language from scratch, too.

Babel will automatically activate the appropriate hyphenation rules for the language you choose. If your LaTeX format does not support hyphenation in the language of your choice, babel will still work but will disable hyphenation, which has quite a negative effect on the appearance of the typeset document (with LuaLaTeX, however, hyphenation rules can be loaded when the document is being typeset). Babel also specifies new commands for some languages, which simplify the input of special characters. See the sections about languages below for more information.

If you call babel with multiple languages:

\usepackage[languageA,languageB]{babel}

then the last language in the option list will be active (i.e. languageB), and you can use the command

\selectlanguage{languageA}

to change the active language (when the document begins, with \begin{document}, the main language is automatically selected). You can also add short pieces of text in another language using the command

\foreignlanguage{languageB}{Text in another language}

Babel also offers various environments for entering larger pieces of text in another language:

\begin{otherlanguage}{languageB}
Text in language B. This environment switches all language-related definitions, like the language 
specific names for figures, tables etc. to the other language.
\end{otherlanguage}

The starred version of this environment typesets the main text according to the rules of the other language, but keeps the language specific string for ancillary things like figures in the main language of the document. The environment hyphenrules switches only the hyphenation patterns used; it can also be used to disallow hyphenation by using the language name 'nohyphenation' (but note otherlanguage* is preferred).

The babel manual provides much more information on these and many other options.

Font management[edit]

If you are using XeTeX or LuaTeX, Babel supports OpenType fonts with fontspec. To ease font handling, it provides the macro \babelfont, which switches the font across languages and sets the OpenType ‘language system’ (ie, language and script). Let us assume you are setting up a document in Swedish, with some words in Hebrew, with a font suited for both languages.

\documentclass{article}
\usepackage[swedish, bidi=default]{babel}
\babelprovide[import]{hebrew}
\babelfont{rm}{FreeSerif}
\begin{document}
Svenska \foreignlanguage{hebrew}{עִבְרִית} svenska.
\end{document}

If, on the other hand, you have to resort to different fonts, you could replace the 4th line above with, say:

\babelfont{rm}{Iwona}
\babelfont[hebrew]{rm}{FreeSerif}

Babel switches the font and selects its ‘language system’ for you when a language is selected.

Bidirectional texts[edit]

Babel provides basic support fo bidi texts, mainly in LuaTeX. The package option may take three values, namely, default, basic-r, and basic. With bidi=basic RTL and LTR text can be mixed without explicit markup (only LuaTeX).

Multilingual versions[edit]

It is possible in LaTeX to typeset the content of one document in several languages and to choose upon compilation which language to output. This might be convenient to keep a consistent sectioning and formatting across the different languages. It is also useful if you make use of multiple proper nouns and other untranslated content. Using the commands above in multilingual documents can be cumbersome, and therefore babel provides a way to define shorter names. With

\babeltags{de = german}

You can write:

text \textde{German text} text
text
\begin{de}
German text
\end{de}
text

The current language can also be tested by using the iflang package by Heiko Oberdiek (the built-in feature from the babel package is not reliable). Here comes a simple example:

\IfLanguageName{ngerman}{Hallo}{Hello}

This allows to easily distinguish between two languages without the need of defining own commands.

Specific languages[edit]

Here is a collection of language-specific suggestions. If you have experience in a language not listed below, please add some notes about it. Some of the methods described in this chapter may be useful when dealing with non-English author names in bibliographies.

Arabic script[edit]

For languages which use the Arabic script, including Arabic, Persian, Urdu, Pashto, Kurdish, Uyghur, etc., add the following code to your preamble:

\usepackage{arabtex}

You can input text in either romanized characters or native Arabic script encodings. Use any of the following commands and environments to enter in text:

\< ... >
\RL{ ... }
\begin{arabtext} ... \end{arabtext}.

See the ArabTeX Wikipedia article for further details.

You may also use the Arabi package within Babel to typeset Arabic and Persian

\usepackage{cmap}
\usepackage[LAE,LFE]{fontenc}
\usepackage[arabic,farsi]{babel}

You may also copy and paste from PDF files produced with Arabi thanks to the support of the cmap package. You may use Arabi with LyX, or with tex4ht to produce HTML.

See Arabi page on CTAN

An example with `babel` and `luatex` follows (rendering by the browser may be different from an editor):

\documentclass{article}
\usepackage[bidi=basic]{babel}
\babelprovide[import=ar, main]{arabic}
\babelfont{rm}{FreeSerif}
\begin{document}
وﻗﺪ ﻋﺮﻓﺖ ﺷﺒﻪ ﺟﺰﻳﺮة اﻟﻌﺮب ﻃﻴﻠﺔ اﻟﻌﺼﺮ اﻟﻬﻴﻠﻴﻨﻲ )اﻻﻏﺮﻳﻘﻲ( ﺑـ
Arabia أو Aravia )ﺑﺎﻻﻏﺮﻳﻘﻴﺔ Αραβία (، اﺳﺘﺨﺪم اﻟﺮوﻣﺎن ﺛﻼث
ﺑﺎدﺋﺎت ﺑـ “Arabia” ﻋﻠﻰ ﺛﻼث ﻣﻨﺎﻃﻖ ﻣﻦ ﺷﺒﻪ اﻟﺠﺰﻳﺮة اﻟﻌﺮﺑﻴﺔ، إﻻ أﻧﻬﺎ
ﺣﻘﻴﻘﺔً ﻛﺎﻧﺖ أﻛﺒﺮ ﻣﻤﺎ ﺗﻌﺮف ﻋﻠﻴﻪ اﻟﻴﻮم.
\end{document}

Armenian[edit]

The Armenian script uses its own characters, which will require you to install a text editor that supports Unicode and will allow you to enter UTF-8 text, such as Texmaker or WinEdt. These text editors should then be configured to compile using XeLaTeX.

Once the text editor is set up to compile wi