General Chemistry/Intermolecular bonds

From Wikibooks, open books for an open world
Jump to: navigation, search

Dipoles[edit]

The polar bonds are symmetric, but they don't point in opposite directions. The result is a dipole (positive pointing down).

Covalent bonds can be polar or non-polar, and so can the overall compound depending on its shape. When a bond is polar, it creates a dipole, a pair of charges (one positive and one negative). If they are arranged in a symmetrical shape, so that they point in opposite directions, they will cancel each other. For example, since the four hydrogens in methane (CH4) are facing away from each other, there is no overall dipole and the molecule is non-polar. In ammonia (NH3), however, there is a negative dipole at the nitrogen, due to the asymmetry caused by the non-bonding electron pair. The polarity of a compound determines its intermolecular bonding abilities.

Polar and Non-Polar Shapes[edit]

When a molecule has a linear, trigonal planar, tetrahedral, trigonal bipyramidal, or octahedral shape, it will be non-polar. These are the shapes that do not have non-bonding lone pairs. (e.g. Methane, CH4) But if some bonds are polar while others are not, there will be an overall dipole, and the molecule will be polar (e.g. Chloroform, CHCl3).

The other shapes (with non-bonding pairs) will be polar. (e.g. Water, H2O) Unless, of course, all the covalent bonds are non-polar, in which case there would be no dipoles to begin with.

Dipole-Dipole Bonds[edit]

When two polar molecules are near each other, they will arrange themselves so that the negative and positive sides line up. There will be an attractive force holding the two molecules together, but it is not nearly as strong a force as the intramolecular bonds. This is how many types of molecules bond together to form large solids or liquids.

Dipole-dipole forces hold these two HCl molecules together.

Hydrogen Bonding[edit]

Certain chemicals with hydrogen in their chemical formula have a special type of intermolecular bond, called hydrogen bonds. Hydrogen bonds will occur when a hydrogen atom is attached to an oxygen, nitrogen, or fluorine atom. This is because there is a large electronegativity difference between hydrogen and fluorine, oxygen, and nitrogen. Thus, molecules such as HF, H_2O, NH_3 are extremely polar molecules with very strong dipole-dipole forces. As a result of the high electronegativities of fluorine, oxygen, and nitrogen, these elements will pull the electrons almost completely away from the hydrogen. The hydrogen becomes a bare proton sticking out from the molecule, and it will be strongly attracted to the negative side of any other polar molecules. Hydrogen bonding is an extreme type of dipole-dipole bonding. These forces are weaker than intramolecular bonds, but are much stronger than other intermolecular forces, causing these compounds to have high boiling points.

The dotted line represents a hydrogen bond.

Covalent Networks[edit]

A covalent network

Silicon dioxide forms a covalent network. Unlike carbon dioxide (with double bonds), silicon dioxide forms only single covalent bonds. As a result, the individual molecules covalently bond into a large network. These bonds are very strong (being covalent) and there is no distinction between individual molecules and the overall network. Covalent networks hold diamonds together. Diamonds are made of nothing but carbon, and so is soot. Unlike soot, diamonds have covalent networks, making them very hard and crystalline.

Van der Waals forces[edit]

Van der Waals, or London dispersion forces are caused by temporary dipoles created when electron locations are lopsided. The electrons are constantly orbiting the nucleus, and by chance they could end up close together. The uneven concentration of electrons could make one side of the atom more negatively-charged than the other, creating a temporary dipole. As there are more electrons in an atom, and the shells are further away from the nucleus, these forces become stronger.

Van der Waals forces explain how nitrogen can be liquified. Nitrogen gas is diatomic; its equation is N2. Since both atoms have the same electronegativity, there is no dipole and the molecule is non-polar. If there are no dipoles, what would make the nitrogen atoms stick together to form a liquid? Van der Waals forces are the answer. They allow otherwise non-polar molecules to have attractive forces. These are by far the weakest forces that hold molecules together.

Melting and Boiling Points[edit]

When comparing two substances, their melting and boiling points may be questioned. To determine which substance has the higher melting or boiling point, you must decide which one has the strongest intermolecular force. Metallic bonds, ionic bonds, and covalent networks are very strong, as they are actually intramolecular forces. These substances have the highest melting and boiling points because they only separate into individual molecules when the powerful bonds have been broken. Breaking these intramolecular forces requires great amounts of heat energy.

Substances with hydrogen bonding will have much higher melting and boiling points than those that have ordinary dipole-dipole forces. Non-polar molecules have the lowest melting and boiling points, because they are held together by the weak van der Waals forces.

If you need to compare the boiling points of two metals, the metal with the larger atomic radius will have weaker bonding, due to the lower concentration of charge. When comparing boiling points of the non-polar gases, like the noble gases, the gas with the largest radius will have the highest points because it has the most potential for van der Waals forces.

Ionic compounds can be compared using Coulomb's Law. Look for substances with high ionic charges and low ionic radii.