Basic Physics of Nuclear Medicine
Basic Physics of Nuclear Medicine is a featured book on Wikibooks because it contains substantial content, it is well-formatted, and the Wikibooks community has decided to feature it on the main page or in other places. Please continue to improve it and thanks for the great work so far! You can edit its advertisement template. This book is also available as a print version and as a PDF version. |
Nuclear Medicine is a fascinating application of nuclear physics. The first ten chapters of this wikibook are intended to support a basic introductory course in an early semester of an undergraduate program. They assume that students have completed decent high school programs in maths and physics and are concurrently taking subjects in the medical sciences. Additional chapters cover more advanced topics in this field. Our focus in this wikibook is the diagnostic application of Nuclear Medicine. Therapeutic applications are considered in a separate wikibook, "Radiation Oncology".
Note that this WikiBooks is well past its use-by date. Some of the basic physics might still be of relevance, but the technologies and applications chapters need substantial updating.
A companion wikibook on the Basic Physics of Digital Radiography is also available.
Contents
- Atomic & Nuclear Structure
- Radioactive Decay
- The Radioactive Decay Law
- Units of Radiation Measurement
- Interaction of Radiation with Matter
- Attenuation of Gamma-Rays
- Gas-Filled Radiation Detectors
- Scintillation Detectors
- Nuclear Medicine Imaging Systems
- Computers in Nuclear Medicine
- Fourier Methods
- X-Ray CT in Nuclear Medicine
- PACS and Advanced Image Processing
- Three-Dimensional Visualization Techniques
- Patient Dosimetry
- Production of Radioisotopes
- Chapter Review
- Dynamic Studies in Nuclear Medicine
- Deconvolution Analysis
- Sonography & Nuclear Medicine
- MRI & Nuclear Medicine
- Dual-Energy Absorptiometry
The principal author of this text is grateful for the expert editorial assistance of Dirk Hünniger during his German translation of the text and his contribution to the section on the Operation of a 99m-Tc Generator.
Bibliography
- Applied Imaging Technology, 4th Ed., JCP Heggie, NA Liddell & KP Maher (St Vincent's Hospital Melbourne, 2001)
- Basic Science of Nuclear Medicine, 2nd Ed., RP Parker, PHS Smith, DM Taylor (Churchill Livingstone, 1984)
- Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, 3rd Ed., WA Kalender (Wiley, 2000)
- Introduction to Nuclear Physics, H Enge (Addison-Wesley, 1966)
- Magnetic Resonance in Medicine, 4th Ed., PA Rinck (Blackwell, 2001)
- Nuclear Medicine in Urology & Nephrology, 2nd Ed., HJ Testa, PH O'Reilly & RA Shields (Butterworth-Heinemann, 1986)
- Physics in Nuclear Medicine, JA Sorenson and ME Phelps (Grune & Stratton, 1980)
- Radioisotope Techniques in Clinical Research and Diagnosis, N Veall and H Vetter (Butterworths, 1958)
- Radionuclide Techniques in Medicine, JM McAlister (Cambridge University Press, 1979).