Trigonometry/Cosine and Sine
Contents
Two Approaches[edit]
The cosine and sine functions relate the angles in right triangles to the ratios of lengths of sides.
There are two usual approaches to introducing the cosine and sine functions.
 In one approach the sine and cosine function are defined in terms of the right angle triangles. This works fine for angles between and . Later on the definition has to be extended to angles outside that range.
 An alternative approach introduces sine and cosine in terms of 'the unit circle'. This approach is a little more sophisticated but has the advantage that it works for all angles.
The two approaches amount to exactly the same thing in the end. We prefer to deal with the full range of angles from the start, which is why in the previous exercise we had you plotting to get a 'unit circle'.
So, let us give some sine and cosine definitions using the unit circle and then using right triangles.
Unit Circle Definition[edit]
this is a placeholder image. It needs to be redrawn with x, y and the angle shown  and nicer colours.
If a line of length 1 is drawn at an angle of to the x axis (where the angle is measured in an anticlockwise direction from the x axis) then the coordinate is given by:
and the coordinate is given by:
Notation and pronunciation
is of course just an abbreviation for 'cosine', and is just an abbreviation for sine. Rather confusingly can be pronounced either 'cos' or 'coz' always with 'o' as in 'bottle', rather than 'o' as in 'code' and is often pronounced 'sine' rather than 'sin'. It's not very logical, it's just how it is. 
Ratios of Sides Definition[edit]
The figure below shows what we are considering:
Here,we shall denote the angles by
 We already know that the longest side is called the hypotenuse.
 The sides next to the angle we have chosen is called the base of the triangle.
 The remaining side which is opposite the angle is called the perpendicular or latitude of the triangle.
The angle determines the ratios of the side. Once the angle is selected we can make the whole triangle larger or smaller but all lengths change in the same proportions. We can't change the length of one side without also changing the length of all sides in the same proportion, or else we have changed the angles. So, once we know the angle we know the ratio of the sides. The functions that give us those ratios are defined as:
and
'Unit Hypotenuse' Definition[edit]
This definition of sine and cosine isn't usually given, but it is also valid.
Choose a triangle with a hypotenuse of unit length and label it like so:
this is a placeholder image, we'll redo it with an angle clearly shown and unit hypotenuse
Then:
Exercises[edit]
Exercise: These definitions amount to the same thing
Use this third definition to convince yourself that the three different ways of defining sine and cosine amount to the same thing, at least for angles between and . 
Exercise: Unit Circle
Did you do the exercise on Plotting (cos(t), sin(t)) on the previous page? It really is important to have had a go and seen how cosine and sine are related to the unit circle. If nothing else you MUST be able to use and on your calculator or you will not get very far with trigonometry. 
Exercise: To think about
The unit circle definition of the trig functions shows that we can work with angles greater than . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): 90^{\circ } represents a quarter of a circle. represents a complete circle. What happens, or what should happen for and if we have angles greater than Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): 360^{\circ } ? 
Tangent[edit]
There is one more trigonometric function that we want to introduce on this page. It's the tangent function or just .
For the unit circle definition we define the tangent of theta as:
For the ratios of sides definition we define the tangent of theta as:
Using the definition of sine and cosine in terms of a triangle with unit hypotenuse it is immediately clear that these are the same thing.
These definitions of Tan amount to the same thing
If we didn't have the definition of sine and cosine in terms of the triangle with unit hypotenuse we'd need to do slightly more work to show that the two definitions of tan were equivalent. We'd do something like this: It is worth checking every step in this. 
Tan or Tangent?
When talking about the tangent function it is usually better to always just say 'Tan' rather than 'Tangent'.
