Statistical Thermodynamics and Rate Theories/Data
Appearance
Molecule | (K) | (K) |
---|---|---|
H2[1] | 87.547 | 6332.52 |
N2[2] | 2.0518 | 3393.54 |
O2[3] | 2.0793 | 2273.60 |
F2[4] | 1.2808 | 1318.87 |
HF[5] | 41.345 | 5954.27 |
HCl[5] | 15.240 | 4303.41 |
NO[6] | 2.4524 | 2739.79 |
C2H2[7] | 1.7012 |
Example
[edit | edit source]Calculate the ground state characteristic rotational () and characteristic vibrational () temperatures for molecular hydrogen, H2.
Where is the reduced Planck constant, is the internuclear distance for ground state hydrogen[1], is the Boltzmann constant, and is the reduced mass.
The characteristic vibrational temperature () is calculated using the following equation
Where is Planck's constant, is the Boltzmann constant, and is the vibrational frequency of the molecule. To retain units of K the vibrational frequency must be changed to units of s-1.
References
[edit | edit source]- ↑ a b http://webbook.nist.gov/cgi/cbook.cgi?ID=1333-74-0
- ↑ http://webbook.nist.gov/cgi/cbook.cgi?ID=C7727379&Mask=1000#ref-1 Invalid parameter in
<ref>
tag - ↑ http://webbook.nist.gov/cgi/cbook.cgi?ID=C7782447&Mask=1000#Diatomic Invalid parameter in
<ref>
tag - ↑ http://webbook.nist.gov/cgi/cbook.cgi?Name=fluorine&Units=SI&cDI=on#Diatomic Invalid parameter in
<ref>
tag - ↑ a b http://webbook.nist.gov/cgi/cbook.cgi?ID=C7664393&Mask=1000#Diatomic Invalid parameter in
<ref>
tag - ↑ http://webbook.nist.gov/cgi/inchi?ID=C10102439&Mask=1000#Diatomic Invalid parameter in
<ref>
tag - ↑ E. Plyler, E. Tidwell, and T. Wiggins, (1963). Rotation-Vibration Constants of Acetylene. Journal of Optical Society America. Table 4, Data section in appendix