Materials Science/Materials/Concrete

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Concrete[edit | edit source]

Concrete is a construction material that consists of cement, commonly Portland cement, aggregate (generally gravel and sand) and water.

Concrete solidifies and hardens after mixing and placement due to a chemical process known as hydration. The water reacts with the cement, which bonds the other components together and eventually creating a stone-like material. It is used to make pavements, architectural structures, foundations, motorways/roads, overpasses, parking structures, brick/block walls and footings for gates, fences and poles.

The Assyrians and Babylonians used clay as cement in their concrete. The Egyptians used lime and gypsum cement. In the Roman Empire, concrete made from quicklime, pozzolanic ash / pozzolana and an aggregate made from pumice was very similar to modern Portland cement concrete. In 1756, the British engineer John Smeaton pioneered the use of Portland cement in concrete, using pebbles and powdered brick as aggregate. In modern times the use of recycled materials as concrete ingredients is gaining popularity because of increasingly stringent environmental legislation. The most conspicuous of these is fly ash, a by product of coal fired power plants. This has a significant impact by reducing the amount of quarrying and landfill space required.

Portland cement is the most common type of cement in general usage. It is a basic ingredient of concrete, mortar and plaster. English engineer Joseph Aspdin patented Portland cement in 1824, and it was named after the limestone cliffs on the Isle of Portland in England because its color is similar to the stone quarried there. It consists of a mixture of oxides of calcium, silicon and aluminium. Portland cement and similar materials are made by heating limestone (a source of calcium) with clay, and grinding this product (called clinker) with a source of sulfate (most commonly gypsum). When mixed with water, the resulting powder will become a hydrated solid over time.

High temperature applications, such as masonry ovens and the like, generally require the use of a refractory cement; concretes based on Portland cement can be damaged or destroyed by elevated temperatures, but refractory concretes are better able to withstand such conditions.

The water and cement paste hardens and develops strength over time. In order to ensure an economical and practical solution, both fine and coarse aggregates are utilised to make up the bulk of the concrete mixture. Sand, natural gravel and crushed stone are mainly used for this purpose. However, it is increasingly common for recycled aggregates (from construction, demolition and excavation waste) to be used as partial replacements of natural aggregates, whilst a number of manufactured aggregates, including air-cooled blast furnace slag and bottom ash are also permitted.

Decorative stones such as quartzite, small river stones or crushed glass are sometimes added to the surface of concrete for a decorative "exposed aggregate" finish, popular among landscape designers.

Workability (or consistence, as it is known in Europe) is the ability of a fresh (plastic) concrete mix to fill the form / mould properly with the desired work (vibration) and without reducing the concrete's quality. Workability depends on water content, chemical admixtures, aggregate (shape and size distribution), cementitious content and age (level of hydration). Raising the water content or adding chemical admixtures will increase concrete workability. Excessive water will lead to increased bleeding (surface water) and / or segregation of aggregates (when the cement and aggregates start to separate), with the resulting concrete having reduced quality. The use of an aggregate with an undesirable gradation can result in a very harsh mix design with a very low slump, which cannot be readily made more workable by addition of reasonable amounts of water.

Workability can be measured by the "slump test", a simplistic measure of the plasticity of a fresh batch of concrete following the ASTM C 143 or EN 12350-2 test standards. Slump is normally measured by filling an "Abrams cone" with a sample from a fresh batch of concrete. The cone is placed with the wide end down onto a level, non-absorptive surface. When the cone is carefully lifted off, the enclosed material will slump a certain amount due to gravity. A relatively dry sample will slump very little, having a slump value of one or two inches (25 or 50 mm). A relatively wet concrete sample may slump as much as six or seven inches (150 to 175 mm).

Slump can be increased by adding chemical admixtures such as mid-range or high-range water reducing agents (super-plasticizers) without changing the water/cement ratio. It is bad practice to add extra water at the concrete mixer. High flow concrete, like self-consolidating concrete, is tested by other flow-measuring methods. One of these methods includes placing the cone on the narrow end and observing how the mix flows through the cone while it is gradually lifted.

Concrete has relatively high compressive strength, but significantly lower tensile strength (about 10% of the compressive strength). As a result, concrete always fails from tensile stresses — even when loaded in compression. The practical implication of this is that concrete elements subjected to tensile stresses must be reinforced. Concrete is most often constructed with the addition of steel or fiber reinforcement. The reinforcement can be by bars (rebar), mesh, or fibres, producing reinforced concrete. Concrete can also be prestressed (reducing tensile stress) using internal steel cables (tendons), allowing for beams or slabs with a longer span than is practical with reinforced concrete alone.

The ultimate strength of concrete is influenced by the water-cement ratio (w/c) [water-cementitious materials ratio (w/cm)], the design constituents, and the mixing, placement and curing methods employed. All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than a higher ratio. The total quantity of cementitious materials (portland cement, slag cement, pozzolans) can affect strength, water demand, shrinkage, abrasion resistance and density. As concrete is a liquid which hydrates to a solid, plastic shrinkage cracks can occur soon after placement; but if the evaporation rate is high, they often can occur during finishing operations (for example in hot weather or a breezy day). Aggregate interlock and steel reinforcement in structural members often negates the effects of plastic shrinkage cracks, rendering them aesthetic in nature. Properly tooled control joints in slabs or saw cuts provide a plane of weakness so that cracks occur unseen inside the joint, making a nice aesthetic presentation. In very high strength concrete mixtures (greater than 10,000 psi), the strength of the aggregate can be a limiting factor to the ultimate compressive strength. In lean concretes (with a high water-cement ratio) the use of coarse aggregate with a round shape may reduce aggregate interlock.

Experimentation with various mix designs is generally done by specifying desired "workability" as defined by a given slump and a required 28 day compressive strength. The characteristics of the coarse and fine aggregates determine the water demand of the mix in order to achieve the desired workability. The 28 day compressive strength is obtained by determination of the correct amount of cementitious to achieve the required water-cement ratio. Only with very high strength concrete does the strength and shape of the coarse aggregate become critical in determining ultimate compressive strength.

The internal forces in certain shapes of structure, such as arches and vaults, are predominantly compressive forces, and therefore concrete is the preferred construction material for such structures.

Pervious concrete is sometimes specified by engineers and architects when porosity is required to allow some air movement or to facilitate the drainage and flow of water through structures. Pervious concrete is referred to as "no fines" concrete because it is manufactured by leaving out the sand or "fine aggregate". A pervious concrete mixture contains little or no sand (fines), creating a substantial void content. Using sufficient paste to coat and bind the aggregate particles together creates a system of highly permeable, interconnected voids that drains quickly. Typically, between 15% and 25% voids are achieved in the hardened concrete, and flow rates for water through pervious concrete are typically around 480 in./hr (0.34 cm/s, which is 5 gal/ft²/ min or 200 L/m²/min), although they can be much higher. Both the low mortar content and high porosity also reduce strength compared to conventional concrete mixtures, but sufficient strength for many applications is readily achieved.

Pervious concrete pavement is a unique and effective means to address important environmental issues and support sustainable growth. By capturing rainwater and allowing it to seep into the ground, porous concrete is instrumental in recharging groundwater, reducing stormwater runoff, and meeting US Environmental Protection Agency (EPA) stormwater regulations. The use of pervious concrete is among the Best Management Practices (BMPs) recommended by the EPA, and by other agencies and geotechnical engineers across the country, for the management of stormwater runoff on a regional and local basis. This pavement technology creates more efficient land use by eliminating the need for retention ponds, swales, and other stormwater management devices. In doing so, pervious concrete has the ability to lower overall project costs on a first-cost basis.

Engineers usually specify the required compressive strength of concrete, which is normally given as the 28 day compressive strength in megapascals (MPa) or pounds per square inch (psi). Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and up to 40% strength gain can be realized with the inclusion of pozzolans and supplementary cementitious materials (SCM's) such as fly ash and/or slag cement. As strength gain depends on the type of mixture, its constituents, the use of standard curing, proper testing and care of cylinders in transport, etc. it becomes imperative to equally rely on testing the fundamental properties of concrete in its fresh, plastic state.

Concrete is typically sampled while being placed, with testing protocols requiring that test samples be cured under laboratory conditions (standard cured). Additional samples may be field cured (non-standard) for the purpose of early 'stripping' strengths, that is, form removal, evaluation of curing, etc. but the standard cured cylinders comprise acceptance criteria. Concrete tests can measure the "plastic" (unhydrated) properties of concrete prior to, and during placement. As these properties affect the hardened compressive strength and durability of concrete (resistance to freeze-thaw) , the properties of slump (workability), temperature, density and age are monitored to ensure the production and placement of 'quality' concrete. Tests are performed per ASTM International or CSA (Canadian Standards Association) and European methods and practices. Technicians performing concrete tests MUST be certified. Structural design and material properties are often specified in accordance with ACI International code (www.concrete.org) under the "prescription" or "performance" purchasing options per ASTM C94 (www.astm.org).

Compressive strength tests are conducted using an instrumented hydraulic ram to compress a cylindrical or cubic sample to failure. Tensile strength tests are conducted either by three-point bending of a prismatic beam specimen or by compression along the sides of a cylindrical specimen.

When structures made of concrete are to be demolished, concrete recycling is a common method of disposing of the rubble. Concrete debris was once routinely shipped to landfills for disposal, but recycling has a number of benefits that have made it a more attractive option in this age of greater environmental awareness, more environmental laws, and the desire to keep construction costs down.

Pieces of concrete collected from demolition sites are put through a crushing machine, often along with asphalt, bricks, and rocks. Crushing facilities accept only uncontaminated concrete, which must be free of trash, wood, paper and other such materials. Metals such as rebar are accepted, since they can be removed with magnets and other sorting devices and melted down for recycling elsewhere. The remaining aggregate chunks are sorted by size. Larger chunks may go through the crusher again. Smaller pieces of concrete are used as gravel for new construction projects. Aggregate base gravel is laid down as the lowest layer in a road, with fresh concrete or asphalt placed over it. Crushed recycled concrete can sometimes be used as the dry aggregate for brand new concrete if it is free of contaminants, though the use of recycled concrete limits the strength, and is not allowed in many jurisdictions.

Recycling concrete provides environmental benefits, as recycling concrete saves landfill space and using recycled concrete as aggregate reduces the need for gravel mining.

Bacteria themselves do not have noticeable effect on concrete. However, anaerobic bacteria in eg. sewage tend to produce hydrogen sulfide, which is then oxidized by aerobic bacteria present in biofilm on the concrete surface above the water level to sulfuric acid which dissolves the carbonates in the cured cement and causes strength loss. Concrete floors laying on ground containing pyrite are also at risk. Using limestone as the aggregate makes the concrete more resistant to acids, and the sewage may be pretreated by ways increasing pH or oxidizing or precipitating the sulphides in order to inhibit the activity of sulphide utilizing bacteria.

Concrete exposed to sea water is susceptible to its corrosive effects. The effects are more pronounced above the tidal zone than where the concrete is permanently submerged. In the submerged zone, magnesium and hydrogen carbonate ions precipitate about 30 micrometers thick layer of brucite on which a slower deposition of calcium carbonate as aragonite occurs. These layers somewhat protect the concrete from other processes, which include attack by magnesium, chloride and sulfate ions and carbonation. Above the water surface, mechanical damage may occur by erosion by waves themselves or sand and gravel they carry, and by crystallization of salts from water soaking into the concrete pores and then drying up. Pozzolanic cements and cements using more than 60% of slag as aggregate are more resistant to sea water than pure portland cement.

When some aggregates containing dolomite are used, a dedolomitization reaction occurs where the magnesium carbonate compound reacts with hydroxyl ions and yields magnesium hydroxide and a carbonate ion. The resulting expansion may cause destruction of the material. Other reactions and recrystallizations, e.g. hydration of clay minerals in some aggregates, may lead to destructive expansion as well.