This is a file from the Wikimedia Commons

File:Julia set of rational function f(z)=z^2(3 − z^4 ) over 2.png

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Original file(1,000 × 1,000 pixels, file size: 52 KB, MIME type: image/png)

Summary

Description
English: Julia set of polynomial function f(z)=z^2(3 − z^4 )/2
Source Own work
Author Adam majewski
Other versions see figure 4 on the page 19 in paper "ON THURSTON’S PULLBACK MAP" by XAVIER BUFF, ADAM EPSTEIN, SARAH KOCH, AND KEVIN PILGRIM

Long description

basin test color
basin of attration to infinity bailout or escape test for z=infinity : iColorOfExterior = 245;
basin to attraction to z=0 test for falling into finite attractor z=1 : iColorsOfInterior[1]=230;
basin of attraction to z=1 test for falling into finite attractor z=0 : iColorsOfInterior[0]=200;

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
You may select the license of your choice.

C src code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  fraktal.republika.pl

  c console progam 

ON THURSTON’S PULLBACK MAP by XAVIER BUFF, ADAM EPSTEIN, SARAH KOCH, AND KEVIN PILGRIM
see figure 4 on the page 19

How to compute iteration : 
z:x+y*%i;
 z1:z^2*(3-z^4)/2;
 realpart(z1);
 ((x^2−y^2)*(−y^4+6*x^2*y^2−x^4+3)−2*x*y*(4*x*y^3−4*x^3*y))/2
 imagpart(z1);
 (2*x*y*(−y^4+6*x^2*y^2−x^4+3)+(x^2−y^2)*(4*x*y^3−4*x^3*y))/2 

a= (x^2−y^2)
b=(−y^4+6*x^2*y^2−x^4+3)
c= 2*x*y
d= (4*x*y^3−4*x^3*y)

so 

re(z1) = (a*b-c*d)/2
im(z1) = (c*b+a*d)/2

there are 2 finite superattracting fixed points :
za=0
zb=1



 



 

  gcc r.c -lm -Wall -march=native 
  time ./a.out

  m
*/

#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also 
#include <complex.h>

/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// radius of the target set ( circle around alfa fixed point ); it is related with iHeight
// so changing iHeight needs change of iMaxDistance2fixed
#define iMaxDistance2fixed  10 // distance point to alfa fixed point in pixels  150 when iHeight=1000; 280 when iHeight=2000
int iMaxDistance2fixed2;
double dMaxDistance2fixed2; // = (iMaxDistance2fixed*PixelWidth)^2
double dMaxDistance2fixed;

// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax ; //
static unsigned int iWidth ; // horizontal dimension of array

static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax ; //

static unsigned int iHeight = 4000; //  
// The size of array has to be a positive constant integer 
static unsigned int iSize ; // = iWidth*iHeight; 

// memmory 1D array 

unsigned char *data;
unsigned char *edge;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax ; // = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array

/* world ( double) coordinate = dynamic plane */
static   const double ZxMin=-1.8;
static  const double ZxMax=1.8;
static  const double ZyMin=-1.8;
static  const double ZyMax=1.8;
static  double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
static  double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
static  double ratio ;
 

// complex numbers of parametr plane 
double Cx; // c =Cx +Cy * i
double Cy;
double complex c; // parameter of function fc(z)=z^2 + c


static unsigned long int iterMax  = 1000; //iHeight*100;

static double ER = 2.0; // Escape Radius for bailout test 
static double ER2;

/* colors = shades of gray from 0 to 255 */
// 8 bit color = int number from 0 to 255
unsigned char iColorsOfInterior[2]={200,230}; // NumberOfPetal of colors = iPeriodChild
static unsigned char iColorOfExterior = 245;
static unsigned char iColorOfUnknown = 100;

long int iUknownPixels=0;



/* ------------------------------------------ functions -------------------------------------------------------------*/



      

//------------------complex numbers -----------------------------------------------------



// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx(unsigned int ix)
{ return (ZxMin + ix*PixelWidth );}

// uses globaal cons
double GiveZy(unsigned int iy)
{ return (ZyMax - iy*PixelHeight);} // reverse y axis

/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i(unsigned int ix, unsigned int iy)
{ return ix + iy*iWidth; }

// plots raster point (ix,iy) 
int iDrawPoint(unsigned char A[], unsigned int ix, unsigned int iy, unsigned char iColor)
{ 

  /* i =  Give_i(ix,iy) compute index of 1D array from indices of 2D array */
  A[Give_i(ix,iy)] = iColor;

  return 0;
}

// draws point to memmory array data
// uses complex type so #include <complex.h> and -lm 
int dDrawPoint(unsigned char A[], complex double point,unsigned char iColor )
{

  unsigned int ix, iy; // screen coordinate = indices of virtual 2D array
  //unsigned int i; // index of 1D array
  
  ix = (creal(point)- ZxMin)/PixelWidth; 
  iy = (ZyMax - cimag(point))/PixelHeight; // inverse Y axis 
  iDrawPoint(A, ix, iy, iColor);
  return 0;
}

 





//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

int setup()
{

  
 
  
  
  printf("setup\n");
 
    /* 2D array ranges */
  
  iWidth = iHeight;
  iSize = iWidth*iHeight; // size = number of points in array 
  // iy
  iyMax = iHeight - 1 ; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix
  
  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize-1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax-ZxMin)/ixMax; //  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax-ZyMin)/iyMax;
  ratio = ((ZxMax-ZxMin)/(ZyMax-ZyMin))/((float)iWidth/(float)iHeight); // it should be 1.000 ...
  
  

  // for numerical optimisation in iteration
  ER2 = ER * ER;
  iMaxDistance2fixed2 =iMaxDistance2fixed * iMaxDistance2fixed;
  dMaxDistance2fixed2 = iMaxDistance2fixed2*PixelWidth*PixelWidth; // dMaxDistance2fixed^2
  dMaxDistance2fixed = sqrt(dMaxDistance2fixed2); // maybe it should be in reversed order ??
    
  
  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc( iSize * sizeof(unsigned char) );
  edge = malloc( iSize * sizeof(unsigned char) );

  if (edge== NULL || data == NULL)
    {
      fprintf(stderr," Could not allocate memory");
      getchar(); 
      return 1;
    }

  

 
  

  
   
  
  printf(" end of setup \n");
  
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

unsigned char ComputeColor(unsigned int ix, unsigned int iy, int IterationMax)
{ 
  // check behavour of z under f(z)=z^2+c
  // using 3 target set:
  // 1. exterior or circle (center at origin and radius ER ) 
  // as a target set containing infinity = for escaping points ( bailout test)
  // for points of exterior of julia set
  // 2. interior of circle with center z=0 and radius=dMaxDistance2fixed
  // 3. interior of the circle  with center z=1 and radius = dMaxDistance2fixed 
  //  Z= Zx+ZY*i;

  double Zx2, Zy2;
  int i=0;
  //int j; // iteration = fc(z)
  double d2 ; /* d2= (distance from z to zb)^2   */
  double Zxt,Zyt ; // 
  double Zx, Zy;
  double a,b,c,d; // temporary variables
  int iDistance;
  
  
  // from screen to world coordinate 
  Zx = GiveZx(ix);
  Zy = GiveZy(iy);
  /* distance from z to zb=1  */
  Zxt=Zx-1.0;
  Zyt=Zy;
  d2=Zxt*Zxt +Zyt*Zyt;
  if (d2<dMaxDistance2fixed2) 
    {
      iDistance = (int)(sqrt(d2)/PixelWidth);
      if (iDistance<iMaxDistance2fixed)
	{ 
	  return  iColorsOfInterior[1];
	}
    }
    
   
   /* distance from z to za=0  */
  d2=Zx*Zx +Zy*Zy;
  if (d2<dMaxDistance2fixed2) 
    {
      iDistance = (int)(sqrt(d2)/PixelWidth);
      if (iDistance<iMaxDistance2fixed)
	{ 
	  return  iColorsOfInterior[0];
	}
    }
    
  // if not inside target set around 
  while (1 )
    { // then iterate 
      
      Zx2 = Zx*Zx; 
      Zy2 = Zy*Zy;
       
      // bailout test 
      if (Zx2 + Zy2 > ER2) return iColorOfExterior; // if escaping stop iteration
       
      // if not escaping or not attracting then iterate = check behaviour
      // new_z  = f(z) = z^2*(3-z^4)/2 
      a= Zx*Zx-(Zy*Zy);
      b=-(Zy*Zy*Zy*Zy)+6*Zx*Zx*Zy*Zy-(Zx*Zx*Zx*Zx)+3;
      c= 2*Zx*Zy;
      d= 4*Zx*Zy*Zy*Zy-4*Zx*Zx*Zx*Zy;
      Zx = (a*b-c*d)/2;
      Zy = (c*b+a*d)/2;
      //
      i+=1;
	 
     /* distance from z to zb=1  */
  Zxt=Zx-1.0;
  Zyt=Zy;
  d2=Zxt*Zxt +Zyt*Zyt;
  if (d2<dMaxDistance2fixed2) 
    {
      iDistance = (int)(sqrt(d2)/PixelWidth);
      if (iDistance<iMaxDistance2fixed)
	{ 
	  return  iColorsOfInterior[1];
	}
    }
    
   /* distance from z to za=0  */
  d2=Zx*Zx +Zy*Zy;
  if (d2<dMaxDistance2fixed2) 
    {
      iDistance = (int)(sqrt(d2)/PixelWidth);
      if (iDistance<iMaxDistance2fixed)
	{ 
	  return  iColorsOfInterior[0];
	}
    }
    
      if (i > IterationMax) break;
      
      
    }

  // pixel is not escaping to infinity or not attracting to fixed attractore : 
  // change parameters : iterMax, distance ...
  iUknownPixels+=1;
  return  iColorOfUnknown ;   //
}

// plots raster point (ix,iy) 
int PlotPoint(unsigned char A[] , unsigned int ix, unsigned int iy, int IterationMax)
{
  unsigned i; /* index of 1D array */
  unsigned char iColor;
  

  i = Give_i(ix,iy); /* compute index of 1D array from indices of 2D array */
  iColor = ComputeColor(ix, iy, IterationMax);
  A[i] = iColor;

  return 0;
}

// fill array 
// uses global var :  ...
// scanning complex plane 
int ComputeFatouComponents(unsigned char A[], int IterationMax )
{
  unsigned int ix, iy; // pixel coordinate 

  printf("compute image \n");
  // for all pixels of image 
  for(iy = iyMin; iy<=iyMax; ++iy) 
    { printf(" %d z %d\n", iy, iyMax); //info 
      for(ix= ixMin; ix<=ixMax; ++ix) PlotPoint(A, ix, iy, IterationMax ) ; //  
    } 
   
  return 0;
}

int ComputeBoundariesIn(unsigned char A[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in edge array ( global var )
 
 
 
 
  printf(" find boundaries in A array using  Sobel filter\n");   
  // #pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax, ER2)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= A[Give_i(iX-1,iY+1)] + 2*A[Give_i(iX,iY+1)] + A[Give_i(iX-1,iY+1)] - A[Give_i(iX-1,iY-1)] - 2*A[Give_i(iX-1,iY)] - A[Give_i(iX+1,iY-1)];
      Gh= A[Give_i(iX+1,iY+1)] + 2*A[Give_i(iX+1,iY)] + A[Give_i(iX-1,iY-1)] - A[Give_i(iX+1,iY-1)] - 2*A[Give_i(iX-1,iY)] - A[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {edge[i]=255;} /* background */
      else {edge[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}

int CopyBoundariesTo(unsigned char A[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  printf("copy boundaries from edge array to data array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (edge[i]==0) A[i]=0;}
 
 
 
  return 0;
}



 
 
// Check Orientation of image : mark first quadrant 
// it should be in the upper right position
// uses global var :  ...
int CheckOrientation(unsigned char A[] )
{
  unsigned int ix, iy; // pixel coordinate 
  double Zx, Zy; //  Z= Zx+ZY*i;
  unsigned i; /* index of 1D array */
  for(iy=iyMin;iy<=iyMax;++iy) 
    {
      Zy = GiveZy(iy);
      for(ix=ixMin;ix<=ixMax;++ix) 
	{

	  // from screen to world coordinate 
	  Zx = GiveZx(ix);
	  i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
	  if (Zx>0 && Zy>0) A[i]=255-A[i];   // check the orientation of Z-plane by marking first quadrant */

	}
    }
   
  return 0;
}

 

// save "A" array to pgm file 
int SaveArray2PGMFile( unsigned char A[], double k)
{
  
  FILE * fp;
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name [30]; /* name of file */
  sprintf(name,"%.0f", k); /*  */
  char *filename =strcat(name,".pgm");
  char *comment="# Numerical approximation of  Julia set for f(z)= z^2*(3-z^4)/2; Adam Majewski";/* comment should start with # */

  /* save image to the pgm file  */      
  fp= fopen(filename,"wb"); /*create new file,give it a name and open it in binary mode  */
  fprintf(fp,"P5\n %s\n %u %u\n %u\n",comment,iWidth,iHeight,MaxColorComponentValue);  /*write header to the file*/
  fwrite(A,iSize,1,fp);  /*write A array to the file in one step */
  printf("File %s saved. \n", filename);
  fclose(fp);

  return 0;
}

int info()
{
  // diplay info messages
  printf("Numerical approximation of  Julia set for f(z)= z^2*(3-z^4)/2; \n");
  printf("Image Width = %f \n", ZxMax-ZxMin);
  printf("PixelWidth = %f \n", PixelWidth);
  printf("size of target set in screen units = iMaxDistance2fixed  = %d pixels \n", iMaxDistance2fixed); 
  printf("size of target set in world units = dMaxDistance2fixed  = %f ; \n", dMaxDistance2fixed);
  printf("Maximal number of iterations = iterMax = %ld \n", iterMax);
  printf("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  printf("Unknown pixels = %ld ; it should be 0 ...\n", iUknownPixels);
  return 0;
}

/* -----------------------------------------  main   -------------------------------------------------------------*/
int main()
{
  setup();
 

 
   
 
  ComputeFatouComponents(data, iterMax);
  SaveArray2PGMFile( data, iHeight+0); // save array data (components of Fatou set ) to pgm file

  ComputeBoundariesIn(data);
  SaveArray2PGMFile( edge, iHeight+1); // save array edge (Julia set ) to pgm file

  

  CopyBoundariesTo(data);
  SaveArray2PGMFile( data, iHeight+2); // save array data (Julia set and components ) to pgm file

  
  printf(" allways free memory  to avoid buffer overflow \n");
  free(data);
  free(edge);

  
  info();

  return 0;
}

Text output :

File 4000.pgm saved. 
 find boundaries in A array using  Sobel filter
File 4001.pgm saved. 
copy boundaries from edge array to data array 
File 4002.pgm saved. 
File 4003.pgm saved. 
 allways free memory  to avoid buffer overflow 
Numerical approximation of  Julia set for f(z)= z^2*(3-z^4)/2; 
Image Width = 3.600000 
PixelWidth = 0.000900 
size of target set in screen units = iMaxDistance2fixed  = 10 pixels 
size of target set in world units = dMaxDistance2fixed  = 0.009002 ; 
Maximal number of iterations = iterMax = 1000 
ratio of image  = 1.000000 ; it should be 1.000 ...
Unknown pixels = 0 ; it should be 0 ...

Image Magic src code

convert 4003.pgm -resize 1000x1000  s4003.png

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current13:14, 11 April 2015Thumbnail for version as of 13:14, 11 April 20151,000 × 1,000 (52 KB)Soul windsurfer{{Information |Description ={{en|1=Julia set of rational function f(z)=z^2(3 − z^4 )/2}} |Source ={{own}} |Author =Adam majewski |Date = |Permission = |other_versions = }} [[Category:Connected...

The following page uses this file:

Metadata