Chemical Sciences: A Manual for CSIR-UGC National Eligibility Test for Lectureship and JRF/Thin layer chromatography

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Thin layer chromatography (TLC) is a chromatography technique used to separate mixtures.[1] Thin layer chromatography is performed on a sheet of glass, plastic, or aluminum foil, which is coated with a thin layer of adsorbent material, usually silica gel, aluminium oxide, or cellulose (blotter paper). This layer of adsorbent is known as the stationary phase.

After the sample has been applied on the plate, a solvent or solvent mixture (known as the mobile phase) is drawn up the plate via capillary action. Because different analytes ascend the TLC plate at different rates, separation is achieved.[2].

Thin layer chromatography can be used to:

  • Monitor the progress of a reaction
  • Identify compounds present in a given substance
  • Determine the purity of a substance

Specific examples of these applications include:

A number of enhancements can be made to the original method to automate the different steps, to increase the resolution achieved with TLC and to allow more accurate quantitation. This method is referred to as HPTLC, or "high performance TLC".

Plate preparation[edit | edit source]

TLC plates are usually commercially available, with standard particle size ranges to improve reproducibility. They are prepared by mixing the adsorbent, such as silica gel, with a small amount of inert binder like calcium sulfate (gypsum) and water. This mixture is spread as a thick slurry on an unreactive carrier sheet, usually glass, thick aluminum foil, or plastic. The resultant plate is dried and activated by heating in an oven for thirty minutes at 110 °C. The thickness of the adsorbent layer is typically around 0.1 – 0.25 mm for analytical purposes and around 0.5 – 2.0 mm for preparative TLC.[3]

Technique[edit | edit source]

Development of a TLC plate, a purple spot separates into a red and blue spot.

The process is similar to paper chromatography with the advantage of faster runs, better separations, and the choice between different stationary phases. Because of its simplicity and speed TLC is often used for monitoring chemical reactions and for the qualitative analysis of reaction products.

A small spot of solution containing the sample is applied to a plate, about one centimeter from the base. The plate is then dipped in to a suitable solvent, such as hexane or ethyl acetate, and placed in a sealed container. The solvent moves up the plate by capillary action and meets the sample mixture, which is dissolved and is carried up the plate by the solvent. Different compounds in the sample mixture travel at different rates due to the differences in their attraction to the stationary phase, and because of differences in solubility in the solvent. By changing the solvent, or perhaps using a mixture, the separation of components (measured by the Rf value) can be adjusted. Also, the separation achieved with a TLC plate can be used to estimate the separation of a flash chromatography column.[4]

Separation of compounds is based on the competition of the solute and the mobile phase for binding places on the stationary phase. For instance, if normal phase silica gel is used as the stationary phase it can be considered polar. Given two compounds which differ in polarity, the more polar compound has a stronger interaction with the silica and is therefore more capable to dispel the mobile phase from the binding places. Consequently, the less polar compound moves higher up the plate (resulting in a higher Rf value). If the mobile phase is changed to a more polar solvent or mixture of solvents, it is more capable of dispelling solutes from the silica binding places and all compounds on the TLC plate will move higher up the plate. Practically this means that if you use a mixture of ethyl acetate and heptane as the mobile phase, adding more ethyl acetate results in higher Rf values for all compounds on the TLC plate. Changing the polarity of the mobile phase will normally not result in reversed order of running of the compounds on the TLC plate. An eluotropic series can be used as a guide in selecting a mobile phase. If a reversed order of running of the compounds is desired, an apolar stationary phase should be used, such as C18-functionalized silica.

Preparative TLC[edit | edit source]

TLC can also be used on a small semi-preparative scale to separate mixtures of up to a few hundred milligrams. The mixture is not "spotted" on the TLC plate as dots, but rather is applied to the plate as a thin even layer horizontally to and just above the solvent level. When developed with solvent the compounds separate in horizontal bands rather than horizontally separated spots. Each band (or a desired band) is scraped off the backing material. The backing material is then extracted with a suitable solvent (e.g. DCM) and filtered to give the isolated material upon removal of the solvent. For small-scale reactions with easily separated products, preparative TLC can be a far more efficient in terms of time and cost than doing column chromatography. Obviously, the whole plate can not be chemically developed or the product will be chemically destroyed. Thus this technique is best used with compounds that are coloured, or visible under UV light. Alternatively, a small section of the plate can be chemically developed e.g. cutting a section out and chemically developing it, or masking most of the plate and exposing a small section to a chemical developer like iodine.

Analysis[edit | edit source]

As the chemicals being separated may be colorless, several methods exist to visualize the spots:

  • Often a small amount of a fluorescent compound, usually manganese-activated zinc silicate, is added to the adsorbent that allows the visualization of spots under a blacklight (UV254). The adsorbent layer will thus fluoresce light green by itself, but spots of analyte quench this fluorescence.
  • Iodine vapors are a general unspecific color reagent
  • Specific color reagents exist into which the TLC plate is dipped or which are sprayed onto the plate[5]
  • In the case of lipids, the chromatogram may be transferred to a PVDF membrane and then subjected to further analysis, for example mass spectrometry, a technique known as Far-Eastern blotting.

Once visible, the Rf value , or retention factor, of each spot can be determined by dividing the distance traveled by the product by the total distance traveled by the solvent (the solvent front). These values depend on the solvent used, and the type of TLC plate, and are not physical constants.

Applications[edit | edit source]

In organic chemistry, reactions are qualitatively monitored with TLC. Spots sampled with a capillary tube are placed on the plate: a spot of starting material, a spot from the reaction mixture, and a "co-spot" with both. A small (3 by 7 cm) TLC plate takes a couple of minutes to run. The analysis is qualitative, and it will show if the starting material has disappeared, i.e. the reaction is complete, if any product has appeared, and how many products are generated (although this might be under-estimated due to co-elution). Unfortunately, TLCs from low-temperature reactions may give misleading results, because the sample is warmed to room temperature in the capillary, which can alter the reaction—the warmed sample analyzed by TLC is not the same as what is in the low-temperature flask. One such reaction is the DIBALH reduction of ester to aldehyde.

As an example the chromatography of an extract of green leaves (for example spinach) in 7 stages of development. Carotene elutes quickly and is only visible until step 2. Chlorophyll A and B are halfway in the final step and lutein the first compound staining yellow.

In one study TLC has been applied in the screening of organic reactions[6] for example in the fine-tuning of BINAP synthesis from 2-naphthol. In this method the alcohol and catalyst solution (for instance iron(III) chloride) are place separately on the base line, then reacted and then instantly analyzed.

References[edit | edit source]

  1. Laurence M. Harwood, Christopher J. Moody. Experimental organic chemistry: Principles and Practice (Illustrated edition ed.). pp. 159–173. ISBN 978-0632020171. 
  2. Vogel's Textbook of Practical Organic Chemistry (5th Edition) (Hardcover) by A.I. Vogel (Author), A.R. Tatchell (Author), B.S. Furnis (Author), A.J. Hannaford (Author), P.W.G. Smith ISBN 0582462363
  3. Tables showing the thickness value of commercial regular and preparative Thin Layer Chromatography plates
  4. Fair, J. D.; Kormos, C. M. J. Chromatogr. A 2008, 1211(1-2), 49-54. (Template:DOI)
  5. Stains for Developing TLC Plates
  6. TLC plates as a convenient platform for solvent-free reactions Jonathan M. Stoddard, Lien Nguyen, Hector Mata-Chavez and Kelly Nguyen Chem. Commun., 2007, 1240 - 1241, Template:DOI