# Calculus/Infinite Limits

## Informal Infinite Limits[edit]

Another kind of limit involves looking at what happens to as gets very big. For example, consider the function . As gets very big, gets very small. In fact, gets closer and closer to zero the bigger gets. Without limits it is very difficult to talk about this fact, because can keep getting bigger and bigger and never actually gets to zero; but the language of limits exists precisely to let us talk about the behavior of a function as it approaches something - without caring about the fact that it will never get there. In this case, however, we have the same problem as before: how big does have to be to be sure that is really going towards 0?

In this case, we want to say that, however close we want to get to 0, for big enough is guaranteed to get that close. So we have yet another definition.

**Definition: (Definition of a limit at infinity)**

We call the **limit of as approaches infinity** if becomes **arbitrarily close** to **whenever** is **sufficiently large**.

When this holds we write

or

Similarly, we call the **limit of as approaches negative infinity** if becomes **arbitrarily close** to **whenever** is **sufficiently negative**.

When this holds we write

or

So, in this case, we write:

and say "The limit, as approaches infinity, equals ," or "as approaches infinity, the function approaches ".

We can also write:

because making very negative also forces to be close to .

**Notice**, however, that infinity is not a number; it's just shorthand for saying "no matter how big." Thus, this is not the same as the regular limits we learned about in the last two chapters.

## Limits at Infinity of Rational Functions[edit]

One special case that comes up frequently is when we want to find the limit at (or ) of a rational function. A rational function is just one made by dividing two polynomials by each other. For example, is a rational function. Also, any polynomial is a rational function, since is just a (very simple) polynomial, so we can write the function as , the quotient of two polynomials.

Consider the numerator of a rational function as we allow the variable to grow very large (in either the positive or negative sense). The term with the highest exponent on the variable will dominate the numerator, and the other terms become more and more insignificant compared to the dominating term. The same applies to the denominator. In the limit, the other terms become negligible, and we only need to examine the dominating term in the numerator and denominator.

There is a simple rule for determining a limit of a rational function as the variable approaches infinity. Look for the term with the highest exponent on the variable in the numerator. Look for the same in the denominator. This rule is based on that information.

- If the exponent of the highest term in the numerator matches the exponent of the highest term in the denominator, the limit (at both and ) is the ratio of the coefficients of the highest terms.

- If the
*numerator*has the highest term, then the fraction is called "top-heavy". If, when you divide the*numerator*by the*denominator*the resulting exponent on the variable is even, then the limit (at both and ) is . If it is odd, then the limit at is , and the limit at is .

- If the
*denominator*has the highest term, then the fraction is called "bottom-heavy" and the limit (at both and ) is zero.

Note that, if the numerator or denominator is a constant (including 1, as above), then this is the same as . Also, a straight power of , like , has coefficient 1, since it is the same as .

### Examples[edit]

- Example 1

Find .

The function is the quotient of two polynomials, and . By our rule we look for the term with highest exponent in the numerator; it's . The term with highest exponent in the denominator is also . So, the limit is the ratio of their coefficients. Since , both coefficients are 1, .

- Example 2

Find .

We look at the terms with the highest exponents; for the numerator, it is , while for the denominator it is . Since the exponent on the numerator is higher, we know the limit at will be . So,

.