Robotics and the World/Mathematics of Robot Control

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Robot Kinematics[edit | edit source]

Mathematics in robotics mainly involves robot kinematics. Robot kinematics is the study of the motion (kinematics) of robots. In a kinematic analysis the position, velocity and acceleration of all the links are calculated without considering the forces that cause this motion. The relationship between motion, and the associated forces and torques is studied in robot dynamics. One of the most active areas within robot kinematics is the screw theory.

Robot kinematics deals with aspects of redundancy, collision avoidance and singularity avoidance. While dealing with the kinematics used in the robots we deal each parts of the robot by assigning a frame of reference to it and hence a robot with many parts may have many individual frames assigned to each movable parts. For simplicity we deal with the single manipulator arm of the robot. Each frames are named systematically with numbers, for example the immovable base part of the manipulator is numbered 0, and the first link joined to the base is numbered 1, and the next link 2 and similarly till n for the last nth link.

Robot kinematics are mainly the following two types: forward kinematics and inverse kinematics. Forward kinematics is also known as direct kinematics. In forward kinematics, the length of each link and the angle of each joint is given and we have to calculate the position of any point in the work volume of the robot. In inverse kinematics, the length of each link and position of the point in work volume is given and we have to calculate the angle of each joint.

Examples[edit | edit source]