From Wikibooks, open books for an open world
Jump to: navigation, search

Robotics can be described as the current pinnacle of technical development. Robotics is a confluence science using the continuing advancements of mechanical engineering, material science, sensor fabrication, manufacturing techniques, and advanced algorithms. The study and practice of robotics will expose a dabbler or professional to hundreds of different avenues of study. For some, the romanticism of robotics brings forth an almost magical curiosity of the world leading to creation of amazing machines. A journey of a lifetime awaits in robotics.

Robotics can be defined as the science or study of the technology primarily associated with the design, fabrication, theory, and application of robots. While other fields contribute the mathematics, the techniques, and the components, robotics creates the magical end product. The practical applications of robots drive development of robotics and drive advancements in other sciences in turn. Crafters and researchers in robotics study more than just robotics.

The promise of robotics is easy to describe but hard for the mind to grasp. Robots hold the promise of moving and transforming materials with the same elan and ease as a computer program transforms data. Today, robots mine minerals, assemble semi-processed materials into automobile components, and assemble those components into automobiles. On the immediate horizon are self-driving cars, robotics to handle household chores, and assemble specialized machines on demand. It is not unreasonable to imagine robots that are given some task, such as reclaim desert into photovoltaic cells and arable land, and left to make their own way. Then the promise of robotics exceeds the minds grasp.

In summary, robotics is the field related to science and technology primarily related to robotics. It stands tall by standing the accomplishments of many other fields of study.

Defining Robots[edit]

Robot used in English describes any construct that automates some behavior. For example, a garage door opener automates the behavior of opening a door. A garage door opener has a sensor to detect the signal from the remote control, actuators to open the door, and a control system to stop turn off the motors and lights when the garage is fully closed. In practice, this type of a machine is better described as a Mechatronic device, and is a subset of the more interesting robots that include autonomy or resourcefulness. This book will consider mechatronic devices to be degenerate robots.

A Mechatronic Device is a degenerate robot with these components:

  1. Sensors, which detect the state of the environment
  2. Actuators, which modify the state of the environment
  3. A Control System, which controls the actuators based on the environment as depicted by the sensors

A Robot is a mechatronic device which also includes resourcefulness or autonomy. A device with autonomy does its thing "on its own" without a human directly guiding it moment-by-moment. Some authors would contend that all mechatronic devices are robots, and that this book's restriction on robot entails only specialized software.

Various types of robots are usually classified by their capabilities. Two examples will be used to capture most of what we see as a "robot".

  1. Machine Pet: A machine, capable of moving in some way, that can sense its surroundings and can act on what it senses autonomously. Most of these robots have no real useful purpose, other than to entertain and challenge. These are also commonly used for experimenting with sensors, artificial intelligence, actuators and more. Most of this book covers this type of robot.
  2. Autonomous Machine: A machine with sensors and actuators that can do some sort of work "on its own". This includes things like robotic lawnmowers and vacuum cleaners, and also self-operating construction machines such as CNC cutters. Most industrial and commercial robots fall in this category.

What isn't considered a "robot" in this book? Pretty much everything you see on RobotWars; those are remote-controlled vehicles without any form of autonomy, no sensors, and just enough of a control system to drive the actuators. These devices use many of the same mechanical technologies described in this book, but not the advanced controls.

In short: If it has autonomy it's a robot (in this book). If it's remote controlled, it isn't.

Student Questions[edit]

  1. Which of these studies would be considered robotics by this definition?
    1. Studying the strength and flexibility of a titanium alloy used to make a robotic arm?
    2. Integrating sensor data from sonar, laser, and CCD cameras and to build an accurate map of surroundings?
    3. The real-time software needed to drive two motors to make a robot go in a straight line?
  2. Classify each of these as a robot, a mechatronic device, a machine, or something else?
    1. A spam email filter.
    2. A garage door opener.
    3. A remote controlled boat.
    4. A 1970s automobile.
    5. A current model automobile which includes lane-following.
    6. An Apple iPod.
    7. An actor in a silver suit.
  3. What is a sensor?