This is a file from the Wikimedia Commons

File:Julia set for z*z+0.05 BDM.png

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Original file(2,000 × 2,000 pixels, file size: 447 KB, MIME type: image/png)

Summary

Description
English: Julia set f(z) = z^2 + 0.05 with binary decomposition (BDM) and Level Curves method( LCM ) for both exterior and interior. Level curves here are boundaries of binary decomposition of target set. The Julia set (boundary of filled-in Julia set) itself is not drawn: we see it as the locus of points where the curves are especially close to each other = a place with high density of curves. Here are 2 basins:
  • basin of attraction to infinity ( exterior of Julia set) superattracting
  • basin of attraction to alfa fixed point ( interior) attracted but not superattracted

There are fixed points:

  • z = infinity, which is also not finite critical point. This is the reason why this basin is superattracting
  • alfa fixed point zp finite fixed point which is not equal to finite critical point This is the reason why this basin is rattracting
  • z = 1, which is repelling ( inside Julia set)
Date
Source Own work
Author Soul windsurfer
Other versions

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

c src code

/*


  here are:
  * 1 critical point  z=0.0
  * 1 weakly attracting cycle period 4
  

 

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOf -> DrawPointOf -> ComputeColorOf ( FunctionTypeT FunctionType , complex double z) -> ComputeColor
  
  
  check only last function  which computes color of one pixel for given Function Type
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
  export  OMP_DISPLAY_ENV="TRUE"	
  gcc j.c -lm -Wall -march=native -fopenmp
  time ./a.out > j.txt


  gcc j.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >i.txt
  time ./a.out >e.txt
  
  make
  
  
  
  
  
  
  convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png

  
  
  
*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP
#include <limits.h>		// Maximum value for an unsigned long long int



// https://sourceforge.net/p/predef/wiki/Standards/

#if defined(__STDC__)
#define PREDEF_STANDARD_C_1989
#if defined(__STDC_VERSION__)
#if (__STDC_VERSION__ >= 199409L)
#define PREDEF_STANDARD_C_1994
#endif
#if (__STDC_VERSION__ >= 199901L)
#define PREDEF_STANDARD_C_1999
#endif
#endif
#endif




/* --------------------------------- global variables and consts ------------------------------------------------------------ */
#define VERSION 20230217

int NumberOfImages = 0;




// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var

static unsigned int iHeight = 5000;	//  
static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array




// The size of array has to be a positive constant integer 
static unsigned long long int iSize;	// = iWidth*iHeight; 

// memmory 1D array for 8 bit color 
unsigned char *data;
unsigned char *edge;
unsigned char *edge2;
//unsigned char *edge2;






// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array



//FunctionType = representing functions
typedef enum  {FatouBasins = 0, FatouComponents = 2,  LSM = 3, LSM_m = 4, Unknown = 5 , BDM = 6, MBD = 7 , MBD2 = 8, SAC = 9, DLD = 10, ND = 11, NP= 12, POT = 13 , Blend = 14, DEM = 15
		
} FunctionTypeT; 


typedef enum  {superattracting = 100, attracting = 200, parabolic = 300,  repelling = 400
		
} DynamicTypeT; 


DynamicTypeT DynamicType; // it is set manually 


// see ComputeColor_FunctionType_DynamicType belwo



// see SetPlane

double radius = 1.5; 
complex double center = 0.0 ;
double  DisplayAspectRatio  = 1.0; // https://en.wikipedia.org/wiki/Aspect_ratio_(image)
// dx = dy compare setup : iWidth = iHeight;
double ZxMin; //= -1.3;	//-0.05;
double ZxMax;// = 1.3;	//0.75;
double ZyMin;// = -1.3;	//-0.1;
double ZyMax;// = 1.3;	//0.7;
double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;

// dem
double BoundaryWidth ; //= 1.0*iWidth/2000.0  ; //  measured in pixels ( when iWidth = 2000) 
double distanceMax ; //= BoundaryWidth*PixelWidth;


double ratio; 


double ER;
double ER2;			//= 1e60;
double AR; // bigger values do not works
double AR2;
complex double parabolic_trap_center;



int IterMax = 1000;
int IterMax_LSM = 10000000;
int IterMax_DEM = 10000000;

/* colors = shades of gray from 0 to 255 
*/
unsigned char iColorOfBasin1 = 170;
unsigned char iColorOfInterior = 150;
unsigned char iColorOfExterior = 225;




unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 5;

// pixel counters
unsigned long long int uUnknown = 0;
unsigned long long int uInterior = 0;
unsigned long long int uExterior = 0;



/* critical point */
const int period = 1;
complex double zcr = 0.0; //
complex double c = 0.0; // circle  Julia set, c is a center of main cardioid

// 1 superattracting cycle period 1
double delta; // delta is a distance between fixed points
/*
alfa < 1/2 <beta
cabs(beta - alfa) = delta

alfa = ( 1 - delta)/2
beta = ( 1 + delta)/2
delta = sqrt(1- 4c)


*/
complex double zp = 0.0;  // one of periodic pointes , alfa
complex double zcr_last; //


// for MBD
static double TwoPi=2.0*M_PI; // texture
double t0 ; // manually tuned t for MBD
// see https://www.youtube.com/watch?v=JttLtB0Gkdk&t=894s
// 

// update with f function 
const char *f_description = "Numerical approximation of Julia set for f(z)= z^2 + c "; // without /n !!!
/* ------------------------------------------ functions -------------------------------------------------------------*/

/* 

*/


// complex function
// upadte f_description also
complex double f(const complex double z0) {

  double complex z = z0;
  z = z*z + c;
  return  z;
}
	


double c_arg(complex double z)
{
 double arg;
 arg = carg(z);
 if (arg<0.0) arg+= TwoPi ; 
 return arg; 
}

double c_turn(complex double z)
{
 double arg;
 arg = c_arg(z);
 return arg/TwoPi; 
}





int is_z_outside(complex double z){

  if (creal(z) >ZxMax ||
      creal(z) <ZxMin ||
      cimag(z) >ZyMax ||
      cimag(z) <ZyMin)
    {return 1; } // is outside = true
      
    
  return 0; // is inside = false



}


complex double GiveFixed(complex double c){
/* 

Equation defining fixed points : z^2-z+c = 0
	z*2+c = z
	z^2-z+c = 0

coefficients of standard form ax^2+ bx + c  
 	a = 1 , b = -1 , c = c
 
The discriminant d is 

	d=b^2- 4ac 
	d = 1 - 4c
	
 
 alfa =  (1-sqrt(d))/2 
*/

	complex double d = 1-4*c;
	complex double z = (1-csqrt(d))/2.0;
	return z;

}






// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx (int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double GiveZy (int iy)
{
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double GiveZ (int ix, int iy)
{
  double Zx = GiveZx (ix);
  double Zy = GiveZy (iy);

  return Zx + Zy * I;




}







//------------------complex numbers -----------------------------------------------------

double cabs2(complex double z){

  return creal(z)*creal(z)+cimag(z)*cimag(z);


}






/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}












/* 

it is different for parabolic case !!!

   is it possible to adjust AR so that level curves in interior have figure 8?
   https://en.wikipedia.org/wiki/Saddle_point

   find such AR for internal LCM/J and LSM that level curves croses critical point and it's preimages
   for attracting ( also weakly attracting = parabolic) dynamics

   it may fail 
   * if one iteration is bigger then smallest distance between periodic point zp and Julia set
   * if critical point is attracted by another cycye ( then change periodic point zp)

   Made with help of Claude Heiland-Allen


   attracting radius of circle around finite attractor
   there are 2 basins so  
  
  
   It would have to be done separately in each basin.

   A suggested method:

   For each critical point, forward iterate to find an attractor and then thin out the critical point set to only one per basin by removing all but one that converge to a common attractor, for each attractor.
   For each pixel, calculate a smoothed iteration value (e.g. using the methods in my GVC coloring ucl) and note which basin it is in.
   For each critical point in the reduced set, calculate a smoothed iteration value using the same method as in step 2.
   For each pixel, subtract from its smoothed iteration value the one found in step 3 for the critical point that shares its basin. Note that the critical point itself, if inside the image rectangle and in a pixel center, will end up with zero and some points may end up with negative values.
   The level set boundaries you want will now be the boundaries where the sign or the integer part of the modified smoothed iteration value changes. In particular, the -0.something to +0.something transition will pass through the critical point, the n.something to (n+1).something transitions for nonnegative n will pass through its images, and the same for negative n will pass through its preimages.

   pauldebrot 
   https://fractalforums.org/programming/11/crtical-points-and-level-curves/4323/msg29514#new
   
   
   -----------------------------------
   related procedures : using AR
   MarkTrap
   IsInsideTrap
   ComputeColorOfFatouBasins
	ComputeColorOfFatouComponents

*/
double GiveTunedAR(const double iter_Max, const complex double zp){

  fprintf(stdout, " compute tuned AR = \n");

  complex double z = zcr; // initial point z0 = criical point 
  double iter;
  double r ;//= 10 * PixelWidth; // initial value 
  double rMin = 30 * PixelWidth;
  // double t;
  
  // iterate critical point
  for (iter=0; iter< iter_Max; ++iter ){
	  
   	r = cabs(zp - z); // check distance between zp = f^p(zcr) and periodic point zp
	if ( r<rMin) {break;} 
    
		
	z = f(z); // forward iteration
	
  }
  
  
	//parabolic_trap_center = (zp + z)/2.0; // for parabolic case only 
  	//parabolic_trap_center  =  (creal(z) + creal(zp))/2.0 + I*(cimag(zp) + cimag(z))/2.0; // midpoint between zf and z
  
  
  
  return r; // use it as a AR
	
	
}








// ****************** DYNAMICS = trap tests ( target sets) ****************************


// not for parabolic case

int IsInsideTrap(int ix, int iy){


  complex double z = GiveZ(ix, iy);
  if (  cabs2(z - zp) < AR2 )
    {return 1;}
  return 0;



}


int TrapIsGood(){

	complex double z = zp+AR;
	
  	int i;			// number of iteration
  	for (i = 0; i < IterMax_LSM; ++i)
    	{
		if ( cabs2(z) > ER2 )
		{ 
			//fprintf(stderr, "trap is bad\n");
			return 0; // trap is bad because point is escaping ; A true statement is one that evaluates to a nonzero number. A false statement evaluates to zero. 
		}
		z = f(z);		//  iteration: z(n+1) = f(zn)
	}
	return 1; // trap is good , point is not escaping
	



}

/*


**************************************************  ComputeColor_FunctionType_DynamicType *********************************************

Make ComputeColor_FunctionType_DynamicType function for each combination of 2 enums
* FunctionTypeT
* DynamicTypeT


then update Compute8BitColor procedure : 


	 case FunctionType + DynamicType: {ComputeColor_FunctionType_DynamicType(z); break;}


run procedure inside MakeImages using DrawImage (array, FunctionType);	 
second enum DynamicType is updated manually inside main function

********************************************************************************************************************************************

*/






// ********************************************************************************************************************
/* ---------------------FatouBasins -----------------------------------------------------------*/
// ********************************************************************************************************************



/*
  1 basin  = not works here, because whole plane / sphere/ rectanlge is the same , the only one basin
  - unknown ( possibly empty set ) 

*/

unsigned char ComputeColor_FatouBasins_superattracting (complex double z)
{



	
	
  int i;			// number of iteration
  for (i = 0; i < IterMax; ++i)
    {


		
      // infinity is superattracting here !!!!!	
       if ( cabs2(z) > ER2 ){ return iColorOfExterior;}
	
      // 1 Attraction basins 
      if ( cabs2(zp-z) < AR2 ){ return iColorOfInterior;}
		 
      			
     
      z = f(z);		//  iteration: z(n+1) = f(zn)
	

    }

  
  return iColorOfUnknown;


}


/*
  2 basins 
  
  - - basin 1 
  - - basin 2
  - unknown ( possibly empty set ) 

*/

unsigned char ComputeColor_FatouBasins_attracting (complex double z)
{



	
	
  int i;			// number of iteration
  for (i = 0; i < IterMax; ++i)
    {


		
      // infinity is superattracting here !!!!!	
       if ( cabs2(z) > ER2 ){ return iColorOfExterior;}
	
      // 1 Attraction basins 
      if ( cabs2(zp-z) < AR2 ){ return iColorOfInterior;}
		 
      			
     
      z = f(z);		//  iteration: z(n+1) = f(zn)
	

    }

  
  return iColorOfUnknown;


}


unsigned char ComputeColor_FatouBasins_parabolic (complex double z)
{



	
	
  int i;			// number of iteration
  for (i = 0; i < IterMax; ++i)
    {


		
      // infinity is superattracting here !!!!!	
       if ( cabs2(z) > ER2 ){ return iColorOfExterior;}
	
      // 1 Attraction basins 
      if ( cabs2(zp-z) < AR2 ){ return iColorOfInterior;}
		 
      			
     
      z = f(z);		//  iteration: z(n+1) = f(zn)
	

    }

  
  return iColorOfUnknown;


}


unsigned char ComputeColor_FatouBasins_repelling (complex double z)
{



	
	
  int i;			// number of iteration
  for (i = 0; i < IterMax; ++i)
    {


		
      // infinity is superattracting here !!!!!	
       if ( cabs2(z) > ER2 ){ return iColorOfExterior;}
	
      // 1 Attraction basins 
      if ( cabs2(zp-z) < AR2 ){ return iColorOfInterior;}
		 
      			
     
      z = f(z);		//  iteration: z(n+1) = f(zn)
	

    }

  
  return iColorOfUnknown;


}




// ********************************************************************************************************************
/* ---------------------FatouComponents -----------------------------------------------------------*/
// ********************************************************************************************************************




unsigned char ComputeColorOfFatouComponents (complex double z)
{



	
	
  


  int i;			// number of iteration
  for (i = 0; i < IterMax; ++i)
    {


      // infinity is superattracting here !!!!!	
       if ( cabs2(z) > ER2 ){ return iColorOfExterior;}
	
  
      //1 Attraction basins 
      if ( cabs2(zp-z) < AR2 ){ return iColorOfBasin1 - (i % period)*20;}
	 
		
     
      z = f(z);		//  iteration: z(n+1) = f(zn)
	

    }

  
  return iColorOfUnknown;


}


// ********************************************************************************************************************
/* ---------------------Level Set Method = LSM -----------------------------------------------------------*/
// ********************************************************************************************************************


/*
2 basins
 exterior is basin of infinity
 interior is superattracting 
 julia set is connected 
*/
unsigned char ComputeColor_LSM_superattracting(complex double z)
{



	//double cabsz2;
	//double distance;


  int i;			// number of iteration
  for (i = 0; i < IterMax_LSM; ++i)
    {


	double cabs2z = cabs2(z);	

      // infinity is superattracting here ,
      // if ( cabs2z > ER2 ) 	{ return (13*i) % 255;} // exterior
      // if ( cabs2z < AR2 ) 	{ return 255- ((7*i) % 255);} // interior	
       
        if ( cabs2z > ER2 || ( cabs2z < AR2 ))
       		{ return (10*i) % 255;} // cabs2(zp-z) = cabs2(z) because zp = zcr = 0
	 
      z = f(z);	

    }

  return iColorOfUnknown;


}


/*
2 basins
 exterior is basin of infinity
 interior is attracting 
 julia set is connected 
*/

unsigned char ComputeColor_LSM_attracting(complex double z)
{



	//double cabsz2;
	//double distance;


  int i;			// number of iteration
  for (i = 0; i < IterMax_LSM; ++i)
    {


	//double cabs2z = cabs2(z);	

      // infinity is superattracting here , only one basin	
       if ( cabs2(z)      > ER2 ) 	{ return (13*i) % 255;} // 
       if ( cabs2(zp - z) < AR2 ) 	{ return 255- ((7*i) % 255);} //	
       
       
	 
      z = f(z);	

    }

  return iColorOfUnknown;


}


/*
no interior = julia set is disconnected = only one basin here 
*/
unsigned char ComputeColor_LSM_repelling(complex double z)
{



	//double cabsz2;
	//double distance;


  int i;			// number of iteration
  for (i = 0; i < IterMax_LSM; ++i)
    {


	//cabsz = cabs(z);	

      // infinity is superattracting here , only one basin	
       if ( cabs2(z) > ER2 )
       		{ return (10*i) % 255;} // cabs2(zp-z) = cabs2(z) because zp = zcr = 0
       		
       
       		
      z = f(z);	

    }

  return iColorOfUnknown;


}

/*
z_n < center < z_p

here  AR = (z_p - z_n)/2

It is parabolic case: compute AR and change trap center in the local setup procedure
*/
unsigned char ComputeColor_LSM_parabolic(complex double z)
{



	//double cabsz;
	//double distance;


  int i;			// number of iteration
  for (i = 0; i < IterMax_LSM; ++i)
    {


	//cabsz = cabs(z);	

      // infinity is superattracting here !!!!!	
       if ( cabs2(z) > ER2 )
       		{ return (10*i) % 255;} // cabs2(zp-z) = cabs2(z) because zp = zcr = 0
       		
	//distance = cabs(z - zp);
	if (cabs2(parabolic_trap_center - z)  < AR2 ) // if z is inside target set ( orbit trap) = interior of cirlce with radius AR
		{ return (10*i) % 255;} // cabs2(zp-z) = cabs2(z) because zp = zcr = 0
     
	
      z = f(z);	

    }

  return iColorOfUnknown;


}







// ********************************************************************************************************************
/* ---------------------Binary Decomposition Method = BDM -----------------------------------------------------------*/
// ********************************************************************************************************************



unsigned char ComputeColor_BDM_superattracting (complex double z)
{



	
	
	double cabs2z;
	//double distance2;
	//double turn;
	int i;			// number of iteration
	
	
	for (i = 0; i < IterMax_LSM; ++i)
	{
		cabs2z = cabs2(z); // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0	

		//  if z is inside target set ( orbit trap) = exterior of circle with radius ER 
		if ( cabs2z > ER2  || cabs2z < AR2) // exterior
       		{ 
       			if (cimag(z) > 0) // binary decomposition of target set
       				{  return 0;}
       				else {return 255; }
		}
		
		z = f(z);	

	}

  return iColorOfUnknown;


}







unsigned char ComputeColor_BDM_attracting (complex double z)
{



	
	
	//double cabs2z;
	//double distance2;
	//double turn;
	int i;			// number of iteration
	
	
	for (i = 0; i < IterMax_LSM; ++i)
	{
		//cabs2z = ; // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0	

		//  if z is inside target set ( orbit trap) = exterior of circle with radius ER 
		if ( cabs2(z) > ER2  ) // exterior
       		{ 
       			if (cimag(z) > 0) // binary decomposition of target set
       				{  return 0;}
       				else {return 255; }
		}
		
		if ( cabs2(zp - z) < AR2  ) // exterior
       		{ 
       			if (cimag(z) > 0) // binary decomposition of target set
       				{  return 0;}
       				else {return 255; }
		}     
	
		z = f(z);	

	}

  return iColorOfUnknown;


}






/*
no interior = julia set is disconnected = only one basin here 
*/
unsigned char ComputeColor_BDM_repelling (complex double z)
{



	
	
	double cabs2z;
	//double distance2;
	//double turn;
	int i;			// number of iteration
	
	
	for (i = 0; i < IterMax_LSM; ++i)
	{
		cabs2z = cabs2(z); // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0	

		//  if z is inside target set ( orbit trap) = exterior of circle with radius ER 
		if ( cabs2z > ER2  ) // exterior
       		{ 
       			if (cimag(z) > 0) // binary decomposition of target set
       				{  return 0;}
       				else {return 255; }
		}
		
		     
	
		z = f(z);	

	}

  return iColorOfUnknown;


}

unsigned char ComputeColor_BDM_parabolic (complex double z)
{



	
	
	double cabs2z;
	double distance2;
	double turn;
	int i;			// number of iteration
	
	
	for (i = 0; i < IterMax_LSM; ++i)
	{
		cabs2z = cabs2(z); // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0	

		//  if z is inside target set ( orbit trap) = exterior of circle with radius ER 
		if ( cabs2z > ER2  ) // exterior
       		{ 
       			if (cimag(z) > 0) // binary decomposition of target set
       				{  return 0;}
       				else {return 255; }
		}
		
		distance2 = cabs2(z  - parabolic_trap_center);
      		if ( distance2  < AR2 ) // if z is inside target set ( orbit trap) = interior of cirlce with radius AR
      		{
      			turn = c_turn(z - zp);
      			if (turn >0 && turn < 0.5 ) // modified binary decomposition of target set
      				{  return 0;}
       				else {return 255; }     		
      		}
     
	
		z = f(z);	

	}

  return iColorOfUnknown;


}












// Modified BD
unsigned char ComputeColorOfMBD (complex double z)
{



	
	
  double cabs2z;
  double distance;
  double turn; 

  int i;			// number of iteration
  for (i = 0; i < IterMax_LSM; ++i)
    {


	cabs2z = cabs2(z); // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0	

      //  if z is inside target set ( orbit trap) = exterior of circle with radius ER 
       if ( cabs2z > ER2  ) // exterior
       		{ 
       			if (cimag(z) > 0) // binary decomposition of target set
       				{  return 0;}
       				else {return 255; }
     
      
      		}
      	distance = cabs(z  - zp);
      	if ( distance  < AR2 ) // if z is inside target set ( orbit trap) = interior of cirlce with radius AR
      		{
      			turn = c_turn(z = zp);
      			if (turn < 0.5 && turn> 0 ) // modified binary decomposition of target set
      				{  return 0;}
       				else {return 255; }
     
      		
      		}
	 
     
	
      z = f(z);	

    }

  return iColorOfUnknown;


}


// Modified BD
unsigned char ComputeColorOfMBD2 (complex double z)
{



	
	
	double cabs2z;
	double turn; 
	//double distance2;

  int i;			// number of iteration
  for (i = 0; i < IterMax_LSM; ++i)
    {


	cabs2z = cabs2(z); // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0	

      //  if z is inside target set ( orbit trap) = exterior of circle with radius ER 
       if ( cabs2z > ER2  ||  cabs2z  < AR2 ) // exterior and interior : if z is inside target set ( orbit trap) = interior of cirlce with radius AR
       		
      		{
      			turn = c_turn(z);
      			if (turn < t0 || turn > t0+0.5) // modified binary decomposition of target set
      				{  return 0;}
       				else {return 255; }
     
      		
      		}
	 
     
	
      z = f(z);	

    }

  return iColorOfUnknown;


}



/* 
==================================================================================================
============================= Draw functions ===============================================================
=====================================================================================================
	
	
	typedef enum  {FatouBasins = 0, FatouComponents = 2,  LSM = 3, LSM_m = 4, Unknown = 5 , BDM = 6, MBD = 7 , MBD2 = 8, SAC = 9, DLD = 10, ND = 11, NP= 12, POT = 13 , Blend = 14, DEM = 15} FunctionTypeT; 
	typedef enum  {superattracting = 100, attracting = 200, parabolic = 300,  repelling = 400} DynamicTypeT; 

	
*/ 
unsigned char Compute8BitColor(FunctionTypeT FunctionType, complex double z){

	unsigned char iColor;
	
	
	switch(DynamicType+FunctionType){
	
		// case FunctionType + DynamicType: {ComputeColor_FunctionType_DynamicType(z); break;}
  		case  FatouBasins + superattracting: 	{iColor = ComputeColor_FatouBasins_superattracting(z); 	break;}
		case  FatouBasins + attracting: 	{iColor = ComputeColor_FatouBasins_attracting(z); 	break;}
		case  FatouBasins + parabolic: 		{iColor = ComputeColor_FatouBasins_parabolic(z); 	break;}
		case  FatouBasins + repelling: 		{iColor = ComputeColor_FatouBasins_repelling(z); 	break;}
		
		//case 200 :{iColor = ComputeColorOfFatouBasins(z); break;}
	  	//case FatouComponents :{iColor = ComputeColorOfFatouComponents(z); break;}
  
		case LSM + superattracting: 	{iColor = ComputeColor_LSM_superattracting(z); 	break;}
		case LSM + attracting: 		{iColor = ComputeColor_LSM_attracting(z); 	break;}
  		case LSM + parabolic:  		{iColor = ComputeColor_LSM_parabolic(z); 	break;}
		case LSM + repelling:  		{iColor = ComputeColor_LSM_repelling(z);	break;}
  		
  		case BDM + superattracting: 	{iColor = ComputeColor_BDM_superattracting(z); 	break;}
		case BDM + attracting: 		{iColor = ComputeColor_BDM_attracting(z); 	break;}
  		case BDM + parabolic:  		{iColor = ComputeColor_BDM_parabolic(z); 	break;}
  		case BDM + repelling:  		{iColor = ComputeColor_BDM_repelling(z); 	break;}
  
  // case DEM : {iColor = ComputeColorOfDEMJ(z); break;}
	
   	
  	//case Unknown : {iColor = ComputeColorOfUnknown(z); break;}
		
		//case BD : {iColor = ComputeColorOfBD(z); break;}
		
		//case MBD : {iColor = ComputeColorOfMBD(z); break;}
  	
		//case MBD2 : {iColor = ComputeColorOfMBD2(z); break;}
		
  	//case SAC : {iColor = ComputeColorOfSAC(z); break;}
  
  	//case DLD : {iColor = ComputeColorOfDLD(z); break;}
		
  	//case ND : {iColor = ComputeColorOfND(z); break;}
		
  	//case NP : {iColor = ComputeColorOfNP(z); break;}
		
  	//case POT : {iColor = ComputeColorOfPOT(z); break;}
		
  	//case Blend : {iColor = ComputeColorOfBlend(z); break;}
   	
		
  
  	
  	
	
	default: break;
	
	
  }
	
  return iColor;



}


// plots raster point (ix,iy) 
int DrawPoint ( unsigned char A[], FunctionTypeT FunctionType, int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  if(i<0 && i> iMax)
    { return 1;}
  
  z = GiveZ(ix,iy);
  iColor = Compute8BitColor(FunctionType, z);
  A[i] = iColor ;		// 
  		
  	  
  return 0;
}




int DrawImage ( unsigned char A[], FunctionTypeT FunctionType)
{
  unsigned int ix, iy;		// pixel coordinate 

  fprintf (stderr, "compute image %d \t c = %.16f \n",  FunctionType, creal(c));
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
  for (iy = iyMin; iy <= iyMax; ++iy)
    {
      fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
      for (ix = ixMin; ix <= ixMax; ++ix)
	DrawPoint(A, FunctionType, ix, iy);	//  
    }
  fprintf (stderr, "\n");	//info 
  return 0;
}







int PlotPoint(const complex double z, unsigned char A[]){

	
  unsigned int ix = (creal(z)-ZxMin)/PixelWidth;
  unsigned int iy = (ZyMax - cimag(z))/PixelHeight;
  unsigned int i = Give_i(ix,iy); /* index of _data array */
	
  	
	
  if(i>-1 && i< iMax)
    {A[i]= 0; // 255-A[i];
    }
	
	
  return 0;
	
}






int IsInsideCircle (int x, int y, int xcenter, int ycenter, int r){

	
  double dx = x- xcenter;
  double dy = y - ycenter;
  double d = sqrt(dx*dx+dy*dy);
  if (d<r) {    return 1;}
  return 0;
	  

} 

// Big point = disk 
int PlotBigPoint(const complex double z, double p_size, unsigned char A[]){

	
  unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth;
  unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight;
  unsigned int i;
	
	
  if (  is_z_outside(z)) 
    {fprintf (stdout,"PlotBigPoint :  z= %.16f %+.16f*I is outside\n", creal(z), cimag(z)); return 1;} // do not plot	
	
  /* mark seed point by big pixel */
  int iSide =p_size*iWidth/2000.0 ; /* half of width or height of big pixel */
  int iY;
  int iX;
  for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){ 
    for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){ 
      if (IsInsideCircle(iX, iY, ix_seed, iy_seed, iSide)) {
	i= Give_i(iX,iY); /* index of _data array */
	//if(i>-1 && i< iMax)
	A[i]= 255-A[i];
      }
      // else {printf(" bad point \n");}
	
    }}
	
	
  return 0;
	
}



int PlotAllPoints(const complex double zz[], int kMax, double p_size,unsigned char A[]){

  int k;
	
	
  printf("kMax = %d \n",kMax);
	

  for (k = 0; k < kMax; ++k)
    {
      //fprintf(stderr, "z = %+f %+f \n", creal(zz[k]),cimag(zz[k]));
      PlotBigPoint(zz[k], p_size, A);}
  return 0;





}




int DrawForwardOrbit(const complex double z0, const unsigned long long int i_Max, double p_size, unsigned char A[]){
 

  
  unsigned long long int i; /* nr of point of critical orbit */
  complex double z = z0;
  printf("draw forward orbit \n");
 
  PlotBigPoint(z, p_size, A);
  
  
  /* forward orbit of critical point  */
  for (i=1;i<i_Max ; ++i)
    {
      z  = f(z);
      //if (cabs2(z - z2a) > 2.0) {return 1;} // escaping
      PlotBigPoint(z, p_size/2 , A);
    }
  zcr_last = z;
  fprintf (stdout,"first point of the orbit z0= %.16f %+.16f*I \n", creal(z0), cimag(z0));
  fprintf (stdout,"last point of the orbit z= %.16f %+.16f*I \n", creal(z), cimag(z));
   
  return 0;
 
}



// ***********************************************************************************************
// ********************** draw line segment ***************************************
// ***************************************************************************************************




// plots raster point (ix,iy) 
int iDrawPoint(unsigned int ix, unsigned int iy, unsigned char iColor, unsigned char A[])
{ 

  /* i =  Give_i(ix,iy) compute index of 1D array from indices of 2D array */
  if (ix >=ixMin && ix<=ixMax && iy >=iyMin && iy<=iyMax )
    {A[Give_i(ix,iy)] = iColor;}
  else {fprintf (stdout,"iDrawPoint :   (%d; %d) is outside\n", ix,iy); }

  return 0;
}



/*
  http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm
  Instead of swaps in the initialisation use error calculation for both directions x and y simultaneously:
*/
void iDrawLine( int x0, int y0, int x1, int y1, unsigned char iColor, unsigned char A[]) 
{
  int x=x0; int y=y0;
  int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1;
  int dy = abs(y1-y0), sy = y0<y1 ? 1 : -1; 
  int err = (dx>dy ? dx : -dy)/2, e2;

  for(;;){
    iDrawPoint(x, y, iColor, A);
    if (x==x1 && y==y1) break;
    e2 = err;
    if (e2 >-dx) { err -= dy; x += sx; }
    if (e2 < dy) { err += dx; y += sy; }
  }
}




int dDrawLineSegment(double complex Z0, double complex Z1, int color, unsigned char *array) 
{

  double Zx0 = creal(Z0);
  double Zy0 = cimag(Z0);
  double Zx1 = creal(Z1);
  double Zy1 = cimag(Z1);
  unsigned int ix0, iy0; // screen coordinate = indices of virtual 2D array 
  unsigned int ix1, iy1; // screen coordinate = indices of virtual 2D array

  // first step of clipping
  //if (  Zx0 < ZxMax &&  Zx0 > ZxMin && Zy0 > ZyMin && Zy0 <ZyMax 
  // && Zx1 < ZxMax &&  Zx1 > ZxMin && Zy1 > ZyMin && Zy1 <ZyMax )
   	
  ix0= (Zx0- ZxMin)/PixelWidth; 
  iy0 = (ZyMax - Zy0)/PixelHeight; // inverse Y axis 
  ix1= (Zx1- ZxMin)/PixelWidth; 
  iy1= (ZyMax - Zy1)/PixelHeight; // inverse Y axis 
   	
  // second step of clipping
  if (ix0 >=ixMin && ix0<=ixMax && ix0 >=ixMin && ix0<=ixMax && iy0 >=iyMin && iy0<=iyMax && iy1 >=iyMin && iy1<=iyMax )
    iDrawLine(ix0,iy0,ix1,iy1,color, array) ;

  return 0;
}



/*
int DrawAttractors(const complex double zpa[], int kMax, double p_size, unsigned char A[]){

	unsigned char color = 0;
	
  	
  	// join points by lin to create closed curve
  	dDrawLineSegment(zp3[0], zp3[1],color,A);
  	dDrawLineSegment(zp3[1], zp3[2],color,A);
  	dDrawLineSegment(zp3[2], zp3[0],color,A);
  	// 
  	PlotAllPoints(zpa, period, p_size,A);
	
	
	

  return 0;

}

*/


int MarkTrap(unsigned char A[]){

  unsigned int ix, iy;		// pixel coordinate 
  unsigned int i;


  fprintf (stderr, "Mark trap \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  for (iy = iyMin; iy <= iyMax; ++iy)
    {
      fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
      for (ix = ixMin; ix <= ixMax; ++ix){
	if (IsInsideTrap(ix, iy)) {
	  	i= Give_i(ix,iy); /* index of _data array */
	  	A[i]= 255-A[i]; // inverse color
	}}}
  return 0;
}






// ***********************************************************************************************
// ********************** mark immediate basin of attracting cycle***************************************
// ***************************************************************************************************


int FillContour(complex double seed,  unsigned char color, unsigned char _data[])
{ 
  /* 
     fills contour with black border ( color = iColorOfBoundary)  using seed point inside contour 
     and horizontal lines 
     it starts from seed point, saves max right( iXmaxLocal) and max left ( iXminLocal) interior points of horizontal line,
     in new line ( iY+1 or iY-1) it computes new interior point  : iXmidLocal=iXminLocal + (iXmaxLocal-iXminLocal)/2;
     result is stored in _data array : 1D array of 1-bit colors ( shades of gray)
     it does not check if index of _data array is good  so memory error is possible 
     
     it need array with components boundaries mrked by iColorOfBoundary
     
  */
	double dXseed = creal(seed);
	double dYseed = cimag(seed);
	// from 
  	int iXseed = (int)((dXseed - ZxMin)/PixelWidth);
  	int iYseed = (int)((ZyMax - dYseed )/PixelHeight); // reversed Y axis
  	
  	
  	
  	
  	int iX; /* seed integer coordinate */
    	int iY = iYseed;
    	/* most interior point of line iY */
    	int iXmidLocal=iXseed;
    	/* min and max of interior points of horizontal line iY */
    	int iXminLocal;
    	int iXmaxLocal; 
  	int i ; /* index of _data array */;


	//fprintf (stderr, "FillContour seed = %.16f %+.16f = %d %+d\n",creal(seed), cimag(seed), iXseed,iYseed);
  
  	/* ---------  move up --------------- */ 
  do{
    iX=iXmidLocal;
    i =Give_i(iX,iY); /* index of _data array */;
  
    /* move to right */
    while (_data[i] != iColorOfBoundary) 
      { _data[i]=color;
	iX+=1; 
	i=Give_i(iX,iY);  
      }
    iXmaxLocal=iX-1;

    /* move to left */
    iX=iXmidLocal-1; 
    i=Give_i(iX,iY);
    while (_data[i] != iColorOfBoundary) 
      { _data[i]=color;
	iX-=1; 
	i=Give_i(iX,iY); 
      }
    iXminLocal=iX+1; 

    iY+=1; /* move up */
    iXmidLocal=iXminLocal + (iXmaxLocal-iXminLocal)/2; /* new iX inside contour */
    i=Give_i(iXmidLocal,iY); /* index of _data array */;
    if ( _data[i] == iColorOfBoundary)  break; /*  it should not cross the border */
 
  } while  (iY<iyMax); 
  
  
  /* ------  move down ----------------- */
  iXmidLocal=iXseed;
  iY=iYseed-1;
  
  
  do{
    iX=iXmidLocal;
    i =Give_i(iX,iY); /* index of _data array */;
  
    /* move to right */
    while (_data[i] != iColorOfBoundary) /*  */
      { _data[i]=color;
	iX+=1;
	i=Give_i(iX,iY);  
      }
    iXmaxLocal=iX-1;

    /* move to left */
    iX=iXmidLocal-1; 
    i=Give_i(iX,iY);
    while (_data[i] != iColorOfBoundary) /*  */
      { _data[i]=color;
	iX-=1; /* move to right */
	i=Give_i(iX,iY);  
      }
    iXminLocal=iX+1; 
  
    iY-=1; /* move down */
    iXmidLocal=iXminLocal + (iXmaxLocal-iXminLocal)/2; /* new iX inside contour */
    i=Give_i(iXmidLocal,iY); /* index of _data array */;
    if ( _data[i]== iColorOfBoundary)  break; /*  it should not cross the border */
    
  } while  (0<iY); 

	//fprintf (stderr, "FillContour done \n");
  return 0;
}


// fill countours of componnets of immediate basin of attraction 
// with color 
// needs zpp and period global var
// it needs componnets boundaris in A array !!!!
int  MarkImmediateBasin( unsigned char A[]){
	fprintf (stderr, "mark immediate basin of attracting cycle \n");
	
	//printf("  \n");
	unsigned char iColor = 100;
	//for (int i=0;i<period ; ++i){
  		 FillContour(zp, iColor , A);
  		 
  		//}
 	return 0;
 	}






// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfBasin1, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfBasin1);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}







// FillAllArrayWithColor
//memset (data, 255, sizeof (unsigned char ) * iSize);








// *******************************************************************************************
// ********************************** save grey A array to pgm file ****************************
// *********************************************************************************************

int SaveArray2PGMFile (unsigned char A[], complex double c, char * n, char *comment)
{

  FILE *fp;
  const unsigned int MaxColorComponentValue = 255;	/* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name[100];		/* name of file */
  snprintf (name, sizeof name, "%.16f_%s",creal(c), n);	/* radius and iHeght are global variables */
  char *filename = strcat (name, ".pgm");
  char long_comment[200]; // to long comment can cause: "*** stack smashing detected ***: terminated"
  sprintf (long_comment, "%s %s", f_description , comment); // f_description is global var





  // save image array to the pgm file 
  fp = fopen (filename, "wb");	// create new file,give it a name and open it in binary mode 
  fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue);	// write header to the file
  size_t rSize = fwrite (A, sizeof(A[0]), iSize, fp);	// write whole array with image data bytes to the file in one step 
  fclose (fp);

  // info 
  if ( rSize == iSize) 
    {
      printf ("File %s saved ", filename);
      if (long_comment == NULL || strlen (long_comment) == 0)
	printf ("\n");
      else { printf (". Comment = %s \n", long_comment); }
    }
  else {printf("wrote %zu elements out of %llu requested\n", rSize,  iSize);}
  
  NumberOfImages +=1; // count images using global variable	

  return 0;
}








int PrintCInfo ()
{

  printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);	// https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is displayed in the console : export  OMP_DISPLAY_ENV="TRUE"

  printf ("__STDC__ = %d\n", __STDC__);
  printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
  printf ("c dialect = ");
  switch (__STDC_VERSION__)
    {				// the format YYYYMM 
    case 199409L:
      printf ("C94\n");
      break;
    case 199901L:
      printf ("C99\n");
      break;
    case 201112L:
      printf ("C11\n");
      break;
    case 201710L:
      printf ("C18\n");
      break;
      //default : /* Optional */

    }

  return 0;
}


int
PrintProgramInfo ()
{


 	// display info messages
  	fprintf (stdout, "%s  \n", f_description );
  	fprintf (stdout, "c =  %.16f %+.16f*i  \n", creal (c), cimag (c));
  	
  	double ImageWidth = (ZxMax - ZxMin);
  	
  	
  	fprintf (stdout, "DynamicType value is setup manually; Once can do it also numerically ( from multiplier of fixed point alfa or from some other properities)\n");
  		switch ( DynamicType){
		case repelling: 
				fprintf (stdout, "\tThere is only one Fatou basin: basin of infinity \n");
				fprintf (stdout, "\tthere is no interior = Julia set is disconnected \n");
				fprintf (stdout, "\tcritical point z=0 is repelling = attracted to infinity \n");
				break;
		case attracting: 
	  			fprintf (stdout, "\tbasin type is attracting \n");
	  			fprintf (stdout, "\tzcr_last =  %.16f \talfa fixed point zp = %.16f\n", creal (zcr_last), creal(zp));// 
	  			fprintf (stdout, "\tdelta =  %.16f is the distance between fixed points\n", delta);// 
	  			fprintf (stdout, "\tAtracting Radius AR is set manually  = %.16f = %f * PixelWidth = %f * ImageWidth \n", AR, AR / PixelWidth, AR /ImageWidth );
	  			break;
  			
		case superattracting: 
				fprintf (stdout, "\tbasin type is superattracting \n");
	  			fprintf (stdout, "\tzcr =  %.16f  = zp = %.16f\n", creal (zcr), creal(zp));// 
	  			fprintf (stdout, "\tAtracting Radius AR is set manually  = %.16f = %f *PixelWidth = %f *ImageWidth \n", AR, AR / PixelWidth, AR /ImageWidth);
	  			break;
		
		case parabolic:
				fprintf (stdout, "\tbasin type  is parabolic \n");
				fprintf (stdout, "\tzcr_last =  %.16f < parabolic_trap_center = %.16f < zp = %.16f\n", creal (zcr_last), creal (parabolic_trap_center), creal(zp));// 
				fprintf (stdout, "\tzp - zcr_last =  %.16f AR*2 = %.16f \t difference = %.16f\n", creal (zp - zcr_last), AR *2.0, creal (zp - zcr_last) -  AR *2.0);// 
				fprintf (stdout, "\tAtracting Radius AR is tuned  = (zp - zcr_last)/2 = %.16f = %f *PixelWidth = %f *ImageWidth \n", AR, AR / PixelWidth, AR /ImageWidth);
				fprintf (stdout, "\tparabolic_trap_center z =  %.16f %+.16f*i  \n", creal (parabolic_trap_center), cimag (parabolic_trap_center));// parabolic_trap_center
				break;
		default: 
	
	
	
	
	}		
			
			
			
			
  	fprintf (stdout, "Image Width = %f in world coordinate\n", ImageWidth);
  	fprintf (stdout, "PixelWidth = %.16f \n", PixelWidth);
  	


  	fprintf (stdout, "plane description \n");
  	fprintf (stdout, "\tcenter z =  %.16f %+.16f*i  and radius = %.16f \n", creal (center), cimag (center), radius);
  	// center and radius
  	// center and zoom
  	// GradientRepetition
  	fprintf (stdout, "Maximal number of iterations = iterMax = %d \n", IterMax);
  	fprintf (stdout, "Maximal number of iterations = iterMax_LSM = %d \n", IterMax_LSM);
  	fprintf (stdout, "ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  
   	
	fprintf (stdout, "\tEscaping Radius = ER = %.16f = %f *PixelWidth = %f * ImageWidth \n", ER, ER / PixelWidth, ER /ImageWidth);
   	fprintf(stdout, " periodic point ");
   	//for (int i=0;i<period ; ++i){
  		fprintf(stdout, "z =  %.16f %+.16f*i  \n", creal (zp), cimag (zp));
  		//}
  	

	//printf("Number of images = %d \n", NumberOfImages);	


  return 0;
}



int SetPlane(complex double center, double radius, double a_ratio){

  ZxMin = creal(center) - radius*a_ratio;	
  ZxMax = creal(center) + radius*a_ratio;	//0.75;
  ZyMin = cimag(center) - radius;	// inv
  ZyMax = cimag(center) + radius;	//0.7;
  return 0;

}



// Check Orientation of z-plane image : mark first quadrant of complex plane 
// it should be in the upper right position
// uses global var :  ...
int CheckZPlaneOrientation(unsigned char A[] )
{
 
  double Zx, Zy; //  Z= Zx+ZY*i;
  unsigned i; /* index of 1D array */
  unsigned int ix, iy;		// pixel coordinate 
	
  fprintf(stderr, "compute image CheckOrientation\n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy, i, Zx, Zy) shared(A, ixMax , iyMax) 
  for (iy = iyMin; iy <= iyMax; ++iy){
    //fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    for (ix = ixMin; ix <= ixMax; ++ix){
      // from screen to world coordinate 
      Zy = GiveZy(iy);
      Zx = GiveZx(ix);
      i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
      if (Zx>0 && Zy>0) A[i]=255-A[i];   // check the orientation of Z-plane by marking first quadrant */
    }
  }
   
   
  return 0;
}







// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int local_setup(double cx){
	
	c = cx;
	zp = GiveFixed(c);
	
	switch ( DynamicType){
		case repelling: // no  interior = no attracting fixed point = only escaping points
				
			break;
		case attracting: 
			delta = sqrt(1.0 - 4.0* creal(c));  // delta is a distance between alfa and beta fixed points
			AR =  delta /20.0;
			
	  		break;
  			
		case superattracting: // cabs(zp - zcr_last ) < PixelWidth 
			AR = 30.0* PixelWidth * iWidth / 5000 ; // 
	  		break;
		
		case parabolic:
				// zcr_last < parabolic_trap_center < zp
				int i; /* nr of point of critical orbit */
  				complex double z = zcr;
  				for (i=1;i<IterMax ; ++i) 
    					{ z = f(z); }
  				zcr_last = z;
				//
				AR = (zp - zcr_last)/2.0;
				parabolic_trap_center = ( creal(zp) + creal(zcr_last))/ 2.0;
				break;
		default: 
	}
	
	
	
	
	
	AR2 = AR*AR;
	
	
	return 0;
}




int general_setup()
{

  fprintf (stderr, "setup start\n");






  /* 2D array ranges */

  iWidth = iHeight* DisplayAspectRatio ;
  iSize = iWidth * iHeight;	// size = number of points in array 
  
  
  
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  
  SetPlane( center, radius,  DisplayAspectRatio );	
  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...
  
    
  
  // LSM  
  // escape radius ( of circle around infinity 
   ER = 200.0; // it can be 2.0 but then there is no level vurves near Julia set
  ER2 = ER*ER;
  
  
  
  //AR = 30* PixelWidth ; //GiveTunedAR(IterMax- 300); 
  //AR2 = AR * AR;
  
  // for MBD
  t0 = 0.0; //1.0 / period; // Is it iternal angle from internal adress  ???
  
  
  // DEM
 // BoundaryWidth = 0.5*iWidth/2000.0  ; //  measured in pixels ( when iWidth = 2000) 
  //distanceMax = BoundaryWidth*PixelWidth;



  /* create dynamic 1D arrays for colors ( shades of gray ) */
	data = malloc (iSize * sizeof (unsigned char));
	edge = malloc (iSize * sizeof (unsigned char));
 	edge2 = malloc (iSize * sizeof (unsigned char));
 	
 	
  if (data == NULL || edge == NULL || edge2 == NULL )
    {
      fprintf (stderr, " Could not allocate memory");
      return 1;
    }
  




 


  fprintf (stderr, " end of setup \n");

  return 0;

}				// ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int end(void)
{


	fprintf (stderr, " allways free memory (deallocate )  to avoid memory leaks \n");	// https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
	fprintf(stderr, "warning: to long comment in SaveArray2PGMFile can cause: *** stack smashing detected ***: terminated\n");
	free (data);
	free(edge);
	free(edge2);
	
	PrintCInfo ();
	return 0;

}



int MakeImages( ){

// warning: to long comment in SaveArray2PGMFile can cause: "*** stack smashing detected ***: terminated"

	
		


	DrawImage (data, FatouBasins);	 
	SaveArray2PGMFile (data, c, "FatouBasins" , "FatouBasins ");
	
	MarkTrap(data);
	SaveArray2PGMFile (data,  c, "FatouBasins_trap" , "FatouBasins  trap");

	
	DrawForwardOrbit(zcr, IterMax, 10, data);
	SaveArray2PGMFile (data, c, "FatouBasins_CRO" , "boundaries of Level set method ( LSM) =  Level Curve Method (LCM) and critical orbit ");
/*
	ComputeBoundaries(data,edge);
	SaveArray2PGMFile (edge,  "FatouBasins_LCM" , "FatouBasins_LCM ");

	CopyBoundaries(edge, data);
	SaveArray2PGMFile (data,  "FatouBasins_LSCM" , "FatouBasins_LSCM");


	DrawImage (data, FatouComponents);	 
	SaveArray2PGMFile (data,  "FatouComponents" , "FatouComponents ");
    
    
  ComputeBoundaries(data,edge);
  SaveArray2PGMFile (edge,  "FatouComponents_LCM" , "FatouComponents_LCM ");
    
  CopyBoundaries(edge, data);
  SaveArray2PGMFile (data,  "FatouComponents_LSCM" , "FatouComponents_LSCM");
    
    
  MarkTraps(data);
  SaveArray2PGMFile (data,  "FatouComponents_LSCM_trap" , "FatouComponents_LSCM_trap");
    
    
 
 // DrawAttractors(zp3, period, 10, data);
  //SaveArray2PGMFile (data,  "FatouComponents_LSCM_zp" , "FatouComponents_LSCM_zp");_
     
    DrawImage (data, FatouBasins);	 
    ComputeBoundaries(data,edge);
   MarkImmediateBasin(edge);
    SaveArray2PGMFile (edge,  "FatouBasins_LCM_immediate" , "FatouBasins_LCM_immediate");
    
    //DrawAttractors(zp3, period, 10, edge);
  //SaveArray2PGMFile (edge,  "FatouBasins_LCM_immediate_zp" , "FatouBasins_LCM_immediate_zp");
   
    */

	DrawImage (data, LSM);	
	SaveArray2PGMFile (data, c, "LSET" , " Level sets of integer escape time of ET  ");

	ComputeBoundaries(data,edge2);
	SaveArray2PGMFile (edge2, c, "LCET" , "boundaries of integer Escape Time =  Level Curve ( LC) of integer Escape Time");
	
	CopyBoundaries(edge2,  data);
	SaveArray2PGMFile (data, c, "LSLCET" , " Level sets and it's baundaries ( Level Curves = LC) of integer escape time of ET  ");
	
	
	
	
	
	DrawImage (data, BDM);	
	SaveArray2PGMFile (data, c,  "BDM" , "BDM = Binary Decomposition Method for both exterior and interior ( if exist) = Level Sets of Binary Decomposition = ");
	
	ComputeBoundaries(data,edge);
	SaveArray2PGMFile (edge, c, "LCBD", "boundaries of Binary Decomposition Method (LC of  BD) = LCBD");
	
	CopyBoundaries( edge2, data);
	SaveArray2PGMFile (data, c,  "LCET_BDM" , "level curves  of integer Escape Tima and Binary Decomposition Method for both exterior and interior ( if exist) ");
	
	CopyBoundaries(edge2,  edge);
	SaveArray2PGMFile (edge, c, "LCBDET ", "boundaries of Binary Decomposition Method and Level sets of Integer Escape Time");
	
	
	
	

	//MarkTrap(edge2);
	//SaveArray2PGMFile (edge2,  c, "LSM_CRO_trap" , "LSM, critical orbit and trap");

    
  	//CopyBoundaries(edge2, data);
 	//SaveArray2PGMFile (data,  "LSCM" , "LSCM");
    
  
    
	
  
  
  
  /*
    
  CopyBoundaries(edge, data);
  SaveArray2PGMFile (data,  "MBD_LSCM" , "MBD_LSCM");
  
  CopyBoundaries(edge2, edge);
  SaveArray2PGMFile (edge,  "MBD_LSM_LCM" , "MBD_LSM_LCM ");
    
    CopyBoundaries(edge, data);
  SaveArray2PGMFile (data,  "MBD_LSM_LSCM" , "MBD_LSM_LSCM");
  
  
	DrawImage (data, FL);	
	SaveArray2PGMFile (data,  "FL" , "FL");
*/


	return 0;



}


// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int main(void)
{

	//int i;
	//int i_max = 10;
	double cx;
	//double cx_min = 0.0;
	//double cx_max = 0.250001;
	//double dcx = (cx_max - cx_min)/ i_max;
	DynamicType = attracting;  // setup DynamicType value manually  ; Once can do it also numerically ( from multiplier or from some properities)
	general_setup();

	cx = 0.005;
	//for (i = 0; i < i_max; ++i){
		local_setup(cx);
		PrintProgramInfo();
		MakeImages(cx);
	//	cx -= dcx;
		
	//	}
	end();
	return 0;
}

Captions

Julia set for z*z+0.05 BDM

Items portrayed in this file

depicts

25 February 2023

image/png

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:37, 25 February 2023Thumbnail for version as of 20:37, 25 February 20232,000 × 2,000 (447 KB)Soul windsurferUploaded own work with UploadWizard

Metadata