Engineering Tables/Z Transform Table

From Wikibooks, open books for an open world
< Engineering Tables
Jump to: navigation, search

Here:

  • u[n]=1 for n>=0, u[n]=0 for n<0
  • \delta[n] = 1 for n=0, \delta[n] = 0 otherwise
Signal, x[n] Z-transform, X(z) ROC
1 \delta[n] \, 1\,  \mbox{all }z\,
2 \delta[n-n_0] \,  z^{-n_0} \,  z \neq 0\,
3 u[n] \,  \frac{1}{1-z^{-1} } |z| > 1\,
4 - u[-n-1] \,  \frac{1}{1 - z^{-1}} |z| < 1\,
5 n u[n] \,  \frac{z^{-1}}{( 1-z^{-1} )^2} |z| > 1\,
6  - n u[-n-1] \,  \frac{z^{-1} }{ (1 - z^{-1})^2 }  |z| < 1 \,
7 n^2 u[n] \,   \frac{ z^{-1} (1 + z^{-1} )}{(1 - z^{-1})^3} |z| > 1\,
8  - n^2 u[-n - 1] \,   \frac{ z^{-1} (1 + z^{-1} )}{(1 - z^{-1})^3} |z| < 1\,
9 n^3 u[n] \,  \frac{z^{-1} (1 + 4 z^{-1} + z^{-2} )}{(1-z^{-1})^4} |z| > 1\,
10 - n^3 u[-n -1] \,  \frac{z^{-1} (1 + 4 z^{-1} + z^{-2} )}{(1-z^{-1})^4} |z| < 1\,
11 a^n u[n] \,  \frac{1}{1-a z^{-1}}  |z| > |a|\,
12 -a^n u[-n-1] \,  \frac{1}{1-a z^{-1}} |z| < |a|\,
13 n a^n u[n] \,  \frac{az^{-1} }{ (1-a z^{-1})^2 } |z| > |a|\,
14 -n a^n u[-n-1] \,  \frac{az^{-1} }{ (1-a z^{-1})^2 }  |z| < |a|\,
15 n^2 a^n u[n] \,  \frac{a z^{-1} (1 + a z^{-1}) }{(1-a z^{-1})^3} |z| > |a|\,
16 - n^2 a^n u[-n -1] \,  \frac{a z^{-1} (1 + a z^{-1}) }{(1-a z^{-1})^3} |z| < |a|\,
17 \cos(\omega_0 n) u[n] \,  \frac{ 1-z^{-1} \cos(\omega_0) }{ 1-2z^{-1}\cos(\omega_0)+ z^{-2} }  |z| >1\,
18 \sin(\omega_0 n) u[n] \,  \frac{ z^{-1} \sin(\omega_0) }{ 1-2z^{-1}\cos(\omega_0)+ z^{-2} }  |z| >1\,
19 a^n \cos(\omega_0 n) u[n] \,  \frac{ 1-a z^{-1} \cos( \omega_0) }{ 1-2az^{-1}\cos(\omega_0)+ a^2 z^{-2} }  |z| > |a|\,
20 a^n \sin(\omega_0 n) u[n] \,  \frac{ az^{-1} \sin(\omega_0) }{ 1-2az^{-1}\cos(\omega_0)+ a^2 z^{-2} }  |z| > |a|\,