Econometric Theory/Definitions

From Wikibooks, open books for an open world
Jump to: navigation, search

Identity Matrix[edit]

The identity matrix, with a size of n, is an n-by-n square matrix with ones on the main diagonal and zeros elsewhere. It is commonly denoted as I_n, or simply by I if the size is immaterial or can be easily determined by the context.

I_1=[1] \quad I_2=\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} \quad I_3=\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} \quad I_n=\begin{bmatrix}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{bmatrix}

The most important property of the identity matrix is that, when multiplied by another matrix, A, the result will be A

AI_n=A\, and I_n A=A\,.