x86 Assembly/Arithmetic

From Wikibooks, open books for an open world
Jump to navigation Jump to search

All arithmetic instructions are executed in (one of) the ALUs. The ALU can only perform integer arithmetics, for floating point instructions see chapter “Floating Point”.

Basic operations[edit | edit source]

Arithmetic instructions take two operands: a destination and a source.

  • The destination must be a register or a memory location.
  • The source may be either a memory location, a register, or a constant value.

Note that at most one operand may be a memory location.

Addition and Subtraction[edit | edit source]

add addend, destination GAS Syntax
add destination, addend Intel Syntax

This adds addend to destination and stores the result in destination.


sub subtrahend, destination GAS Syntax
sub destination, subtrahend Intel Syntax

Like add, only it subtracts subtrahend from destination instead. In C: destination -= subtrahend;

Multiplication[edit | edit source]

Unsigned Multiplication[edit | edit source]

mul multiplicand

This multiplies multiplicand by the value of corresponding byte-length in the accumulator.

width of multiplicand 1 byte 2 bytes 4 bytes 8 bytes
corresponding multiplier AL AX EAX RAX
product higher part stored in AH DX EDX RDX
product lower part stored in AL AX EAX RAX
result registers used by mul

In the second case, the target is not EAX for backward compatibility with code written for older processors.

Affected flags are:

  • OF ≔ higher part of product ≠ 0
  • CF ≔ higher part of product ≠ 0

All other flags are undefined.

Signed Multiplication[edit | edit source]

imul multiplicand

This instruction is almost like mul, but it treats the sign bit (the MSB), differently.

The imul instruction also accepts two other formats:


imul multiplicand, destination GAS Syntax
imul destination, multiplicand Intel Syntax

This multiplies destination by multiplicand and puts the result, the product, in destination.


imul multiplicand, multiplier, product GAS Syntax
imul product, multiplier, multiplicand Intel Syntax

This multiplies multiplier by multiplicand and places it into product.

Division[edit | edit source]

div divisor

This divides the value in the dividend register(s) by divisor, see table below.

width of divisor 1 byte 2 bytes 4 bytes 8 bytes
dividend AX DX AX EDX EAX RDX RAX
remainder stored in AH DX EDX RDX
quotient stored in AL AX EAX RAX
result registers for div

The circle () means concatenation. With divisor size 4, this means that EDX are the bits 32-63 and EAX are bits 0-31 of the input number (with lower bit numbers being less significant, in this example).

As you typically have 32-bit input values for division, you often need to use CDQ to sign-extend EAX into EDX just before the division.

If quotient does not fit into quotient register, arithmetic overflow interrupt occurs. All flags are in undefined state after the operation.


idiv arg

As div, only signed.

Sign Inversion[edit | edit source]

neg arg

Arithmetically negates the argument (i.e. two's complement negation).

Carry Arithmetic Instructions[edit | edit source]

adc src, dest GAS Syntax
adc dest, src Intel Syntax


Add with carry. Adds src + CF to dest, storing result in dest. Usually follows a normal add instruction to deal with values twice as large as the size of the register. In the following example, source contains a 64-bit number which will be added to destination.

mov eax, [source] ; read low 32 bits
mov edx, [source+4] ; read high 32 bits
add [destination], eax ; add low 32 bits
adc [destination+4], edx ; add high 32 bits, plus carry


sbb src, dest GAS Syntax
sbb dest, src Intel Syntax

Subtract with borrow. Subtracts src + CF from dest, storing result in dest. Usually follows a normal sub instruction to deal with values twice as large as the size of the register.

Increment and Decrement[edit | edit source]

Increment[edit | edit source]

inc augend

This instruction increments the register value augend by 1. It performs much faster than add arg, 1, but it does not affect the CF.

Decrement[edit | edit source]

dec minuend

Operation[edit | edit source]

Decrements the value in minuend by 1, but this is much faster than the semantically equivalent sub minuend, 1.

Operands[edit | edit source]

Minuend may be either a register or memory operand.

Application[edit | edit source]

  • Some programming language represent Boolean values with either all bits zero, or all bits set to one. When you are programming Boolean functions you need to take account of this. The dec instruction can help you with this. Very often you set the final (Boolean) result based on flags. By choosing an instruction that is opposite of the intended and then decrementing the resulting value you will obtain a value satisfying the programming language’s requirements. Here is a trivial example testing for zero.
    xor rax, rax   ; rax ≔ false (ensure result is not wrong due to any residue)
    test rdi, rdi  ; rdi ≟ 0 (ZF ≔ rax = 0)
    setnz al       ;  al ≔ ¬ZF
    dec rax        ; rax ≔ rax − 1
    
    If you intend to set false the “erroneously” set 1 will be “fixed” by dec. If you intend to set true, which is represented by −1, you will decrement the value zero, the “underflow” of which causing all bits to flip. Note, some architectures execute dec slowly, because of the fact that the flags register is overwritten only partially. It therefore is usually more efficient to use neg
    setz al        ;  al ≔ ZF
    neg rax        ; rax ≔ 0 − rax
    
    which will affect the CF too, though.
  • Since inc and dec do not affect the CF, you can use these instructions to update a loop’s counting variable without overwriting some information stored in it. If you need an instruction that does not affect any flags while implicitly also performing a dec, you could use the rather slow loop.

Pointer arithmetic[edit | edit source]

The lea instruction can be used for arithmetic, especially on pointers. See chapter “data transfer”, § “load effective address”.