Wikibooks:Sandbox

From Wikibooks, open books for an open world
Jump to: navigation, search

% MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b % GaamyEaiabg2da9iaadIhacqGHRaWkcaWG4bWaaWbaaSqabeaacaaI % YaaaaOGaamyEaiabgUcaRiaadMhadaahaaWcbeqaaiaaikdaaaaake % aadaWcaaqaaiaadsgaaeaacaWGKbGaamiEaaaacaGGOaGaamiEaiaa % dMhacaGGPaGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaadIhaaa % GaaiikaiaadIhacqGHRaWkcaWG4bWaaWbaaSqabeaacaaIYaaaaOGa % amyEaiabgUcaRiaadMhadaahaaWcbeqaaiaaikdaaaGccaGGPaaaba % GaamiEamaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH % RaWkcaWG5bGaaiikaiaaigdacaGGPaGaeyypa0JaaGymaiabgUcaRi % aadIhadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaadsgacaWG5baa % baGaamizaiaadIhaaaGaey4kaSIaamyEaiaacIcacaaIYaGaamiEai % aacMcacqGHRaWkcaaIYaGaamyEamaalaaabaGaamizaiaadMhaaeaa % caWGKbGaamiEaaaaaeaacaWG4bWaaSaaaeaacaWGKbGaamyEaaqaai % aadsgacaWG4baaaiabg2da9iaaigdacqGHRaWkcaWG4bWaaWbaaSqa % beaacaaIYaaaaOWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4b % aaaiabgUcaRiaaikdacaWG5bWaaSaaaeaacaWGKbGaamyEaaqaaiaa % dsgacaWG4baaaiabgUcaRiaaikdacaWG4bGaamyEaiabgkHiTiaadM % haaeaacaWG4bWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4baa % aiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaads % gacaWG5baabaGaamizaiaadIhaaaGaeyOeI0IaaGOmaiaadMhadaWc % aaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0JaaGymai % abgUcaRiaaikdacaWG4bGaamyEaiabgkHiTiaadMhaaeaadaWcaaqa % aiaadsgacaWG5baabaGaamizaiaadIhaaaGaaiikaiaadIhacqGHsi % slcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadMha % caGGPaGaeyypa0JaaGymaiabgUcaRiaaikdacaWG4bGaamyEaiabgk % HiTiaadMhaaeaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIha % aaGaeyypa0ZaaSaaaeaacaaIXaGaey4kaSIaaGOmaiaadIhacaWG5b % GaeyOeI0IaamyEaaqaaiaadIhacqGHsislcaWG4bWaaWbaaSqabeaa % caaIYaaaaOGaeyOeI0IaaGOmaiaadMhaaaaaaaa!C7B0! \[\begin{gathered}

 xy = x + {x^2}y + {y^2} \hfill \\
 \frac{d}Template:Dx(xy) = \frac{d}Template:Dx(x + {x^2}y + {y^2}) \hfill \\
 x\fracTemplate:DyTemplate:Dx + y(1) = 1 + {x^2}\fracTemplate:DyTemplate:Dx + y(2x) + 2y\fracTemplate:DyTemplate:Dx \hfill \\
 x\fracTemplate:DyTemplate:Dx = 1 + {x^2}\fracTemplate:DyTemplate:Dx + 2y\fracTemplate:DyTemplate:Dx + 2xy - y \hfill \\
 x\fracTemplate:DyTemplate:Dx - {x^2}\fracTemplate:DyTemplate:Dx - 2y\fracTemplate:DyTemplate:Dx = 1 + 2xy - y \hfill \\
 \fracTemplate:DyTemplate:Dx(x - {x^2} - 2y) = 1 + 2xy - y \hfill \\
 \fracTemplate:DyTemplate:Dx = \fracTemplate:1 + 2xy - y{{x - {x^2} - 2y}} \hfill \\ 

\end{gathered} \]