User:Inconspicuum/Physics (A Level)/Resistivity and Conductivity
Resistivity and conductivity are material properties: they apply to all examples of a certain material anywhere. They are not the same as resistance and conductance, which are properties of individual artefacts. This means that resistivity and conductivity only apply to a given object. They describe how well a material resists or conducts an electric current.
Symbols and Units
[edit | edit source]Resistivity is usually represented by the Greek letter rho (ρ), and is measured in Ω m. Conductivity is usually represented by the Greek letter sigma (σ), and is measured in S m-1.
Formulae
[edit | edit source]The formula relating resistivity (ρ) to resistance (R), cross-sectional area (A) and length (L) is:
Conductivity is the reciprocal of resistivity, just as conductance (G) is the reciprocal of resistance. Hence:
You should be able to rearrange these two formulae to be able to work out resistance, conductance, cross-sectional area and length. For example, it all makes a lot more sense if we write the first formula in terms of ρ, A and L:
From this, we can see that the resistance of a lump of material is higher if it has a higher resistivity, or if it is longer. Also, if it has a larger cross-sectional area, its resistance is smaller.