User:DVD206/On some inverse problems

From Wikibooks, open books for an open world
Jump to navigation Jump to search

On Some Inverse Problems

Dedicated to Nicole DeLaittre


The inverse problems, which this book is about are the mathematical problems of recovering the coefficients of functional and differential systems of equations from data about their solutions. These problems are opposite in some sense to the forward problems of evaluating functions. The inverse problems are well suited for computer simulations and many classical and current mathematical problems can be restated with ease as inverse problems on graphs or manifolds. Also the context of the inverse problems provides a unified point of view on the work of many great mathematicians.

These are some of the man motivations for writing this book.

The study of inverse problems takes its roots from medical imaging, such as CT scans, X-rays and MRIs and oil & gas production industry. It was motivated by needs of non-destructive and non-intrusive methods for study of hidden objects such as human organs or Earth's natural resources.

The tools of study and solutions of the inverse problems considered in this book allow one to "see inside" the objects using data about the electro-magnetic fields and sound waves observed at the boundary or outside the object.

Even though we reference many mathematical areas in this book, it is practically self contained, and is intended for the use by a wide audience of people interested in the subject.

Basic definitions and background [edit]

Graphs and manifolds[edit]

Harmonic functions [edit]

On random processes [edit]

/The inverse problems[edit]

/Applications to classical problems[edit]

/Solving polynomial equations[edit]

Rectangular directed layered grid

/Pascal triangle[edit]

Rectangular grids and gluing graphs

/Monodromy operator[edit]

Ordinary differential equations (ODEs)

/Three-term recurrence three-band matrices and continued fractions[edit]

/On inverse problem of Calderon[edit]

/"Can One Hear the Shape of a Drum?"[edit]

/On inhomogeneous string of Krein[edit]

Special matrices and determinants [edit]

/Electrical networks application[edit]

/Dirichlet-to-Neumann operator[edit]

/Effective conductivities[edit]

/Embedded graphs and their transformations[edit]

/Y-Δ and star-mesh transforms[edit]

/Medial graphs[edit]

/Dual graphs and harmonic conjugates[edit]

/On the genus of a graph[edit]

/Hamilton paths in graphs[edit]

/The new spectral theorem[edit]

/The Layered case and continued fractions[edit]

/Fourier coordinates[edit]

/Stieltjes continued fractions[edit]

A finite continued fraction is an expression of the form

/Blaschke products[edit]

Let a_i be a set of points in the complex unit disc. The corresponding Blaschke product is defined as

If the set of points is finite, the function defines the n-to-1 map of the unit disc onto itself,

where n is the number of points.

If the set of points is infinite, the product converges and defines an automorphism of the complex unit disc, given the Blaschke condition

/Pick-Nevanlinna interpolation problem[edit]

/Cauchy matrices[edit]

/Solution of the layered inverse problem[edit]

Rotation invariant layered networks 
A. Elementary symmetric functions and permutations
B. Continued fractions and interlacing properties of zeros of polynomials
C. Wave-particle duality and identities involving integrals of paths in a graph and its Laplacian eigenvalues
D. Square root and finite-differences

Given the Dirichlet-to-Neumann map of a layered network, find the eigenvalues and the interpolate, calculate the Blaschke product and continued fraction. That gives the conductivities of the layers.

/The square root of the minus Laplacian[edit]

We will now consider an important special case of the inverse problem


/The case of the unit disc[edit]

/Zolotorev problem[edit]

/One more example[edit]

/Total positivity property[edit]

/Compound matrices[edit]

/Variation diminishing property[edit]

/Spectral properties[edit]

/Connections between discrete and continuous models[edit]

/Kernel of Dirichlet-to-Neumann map[edit]


The author would like to thank Wikipedia for ... Many thanks to the students of the REU summer school on inverse problems at the UW.