Trigonometry/Simplifying a sin(x) + b cos(x)
Consider the function
We shall show that this is a sinusoidal wave, and find its amplitude and phase.
To make things a little simpler, we shall assume that a and b are both positive numbers. This isn't necessary, and after studying this section you may like to think what would happen if either of a or b is zero or negative.
Geometric Argument[edit]
todo: add diagram.
We'll first use a geometric argument that actually shows a more general result, that:
is a sinusoidal wave. Since we can set the result we are trying for with follows as a special case.
We use the 'unit circle' definition of sine. is the y coordinate of a line of length at angle to the x axis, from O the origin, to a point A.
If we now draw a line Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): \overline {AB} of length at angle (where that angle is measure relative to a line parallel to the x axis), its y coordinate is the sum of the two sines.
However, there is another way to look at the y coordinate of point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): B . The line does not change in length as we change , because the lengths of and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): \overline {AB} and the angle between them do not change. All that happens is that the triangle rotates about O. In particular rotates about O.
This then brings us back to a 'unit circle' like definition of a sinusoidal function. The amplitude is the length of and the phase is .
Algebraic Argument[edit]
The algebraic argument is essentially an algebraic translation of the insights from the geometric argument. We're also in the special case that and . The x's and y's in use in this section are now no longer coordinates. The 'y' is going to play the role of and the 'x' plays the role of .
We define the angle y by .
By considering a rightangled triangle with the short sides of length a and b, you should be able to see that
 and .
Check this
Check that as expected. 
 ,
which is (drum roll) a sine wave of amplitude and phase y.
Check this
Check each step in the formula.

The more general case
Can you do the full algebraic version for the more general case: using the geometric argument as a hint? It is quite a bit harder because is not a right triangle.
