Real Analysis/Symbols

We begin with listing various sets of numbers that are important in mathematical analysis.

 ${\displaystyle \mathbb {N} }$ or N The natural numbers ${\displaystyle \mathbb {Z} }$ or Z The integers ${\displaystyle \mathbb {Q} }$ or Q The rational numbers ${\displaystyle \mathbb {R} }$ or R The real numbers ${\displaystyle \mathbb {C} }$ or C The complex numbers

 ${\displaystyle \forall }$ For all ${\displaystyle \exists }$ Exists/There Exists ${\displaystyle \subseteq ,\subset }$ Subset, Proper Subset ${\displaystyle \supseteq ,\supset }$ Superset, Proper Superset ${\displaystyle \in }$ Belongs to ${\displaystyle \setminus }$ Set Subtraction ${\displaystyle \cup }$ Union ${\displaystyle \cap }$ Intersection ${\displaystyle |x|}$ Absolute value ${\displaystyle \sup }$ Supremum/Least Upper Bound ${\displaystyle \inf }$ Infimum/Greatest Lower Bound ${\displaystyle \emptyset ,\phi }$ Empty Set ${\displaystyle \wedge }$ Logical And

 ${\displaystyle \mathrm {A} ,\alpha }$ Alpha ${\displaystyle \mathrm {B} ,\beta }$ Beta ${\displaystyle \Gamma ,\gamma }$ Gamma ${\displaystyle \Delta ,\delta }$ Delta ${\displaystyle \mathrm {E} ,\epsilon }$ Epsilon ${\displaystyle \mathrm {Z} ,\zeta }$ Zeta ${\displaystyle \mathrm {H} ,\eta }$ Eta ${\displaystyle \Theta ,\theta }$ Theta ${\displaystyle \mathrm {I} ,\iota }$ Iota ${\displaystyle \mathrm {K} ,\kappa }$ Kappa ${\displaystyle \Lambda ,\lambda }$ Lambda ${\displaystyle \mathrm {M} ,\mu }$ Mu ${\displaystyle \mathrm {N} ,\nu }$ Nu ${\displaystyle \Xi ,\xi }$ Xi ${\displaystyle O,o}$ Omicron ${\displaystyle \Pi ,\pi }$ Pi ${\displaystyle \mathrm {P} ,\rho }$ Rho ${\displaystyle \Sigma ,\sigma }$ Sigma ${\displaystyle \mathrm {T} ,\tau }$ Tau ${\displaystyle \Upsilon ,\upsilon }$ Upsilon ${\displaystyle \Phi ,\phi }$ Phi ${\displaystyle \mathrm {X} ,\chi }$ Chi ${\displaystyle \Psi ,\psi }$ Psi ${\displaystyle \Omega ,\omega }$ Omega