Physics Study Guide/Logs
Review of logs[edit | edit source]
Been a while since you used logs? Here is a quick refresher for you.
The log (short for logarithm) of a number N is the exponent used to raise a certain "base" number B to get N. In short, means that .
Typically, logs use base 10. An increase of "1" in a base 10 log is equivalent to an increase by a power of 10 in normal notation. In logs, "3" is 100 times the size of "1". If the log is written without an explicit base, 10 is (usually) implied.
therefore: log(10^{–12}) = –12 |
also: log(1000) = 3 |
Another common base for logs is the trancendental number , which is approximately 2.7182818.... Since , these can be more convenient than . Often, the notation is used instead of
.
The following properties of logs are true regardless of whether the base is 10, , or some other number.
logA + logB = log(AB) |
Adding the log of A to the log of B will give the same result as taking the log of the product A times B.
Subtracting the log of B from the log of A will give the same result as taking the log of the quotient A divided by B.
The log of (A to the Bth power) is equal to the product (B times the log of A).
A few examples:
log(2) + log(3) = log(6)
log(30) – log(2) = log(15)
log(8) = log(2^{3}) = 3log(2)