Ordinary Differential Equations/Trajectories
Appearance
Orthogonal Trajectory
[edit | edit source]Let A be a family of curves. Then B is an orthogonal trajectory of A if every member of B(also a family of curves) cuts every member of A at right angle.It is important to note that we are not insisting that B should intersect every member of A but if they intersect, the angle between their tangents, at every point of intersection, is
Example
[edit | edit source]Every straight line passing through origin is a normal to every circle having origin as the center. Hence they are orthogonal trajectories of each other.
Steps to find orthogonal trajectory
[edit | edit source]- let f(x,y,c)=0 be the equation of the family of curves, where c is an arbitrary constant.
- Differentiate the given equation with respect to x and then eliminate c.
- replace by
- Solve the obtained differential equation. You will get the required orthogonal trajectory.