On 2D Inverse Problems/Notation

From Wikibooks, open books for an open world
Jump to navigation Jump to search

* # :<math> * # \mathbb{N}\mbox{ of natural numbers} * # </math> * # :<math>} * # \mathbb{D} \mbox{ is the open disc domain} * # </math> * # :<math> * # {b is the domain boundary} * # </math> * # :<math> * # \mathbb{C}^\pm \mbox{ is the half-plane} * # </math> * # :<math> * # \mbox{mega is a root of unity} * # </math> * # :<math> * # \nabla \mbox{ is the gradient} * # </math> * # :<math> * # \Delta=\nabla\cdot\nabla \mbox{ is the Laplace opera} * # </math> * # :<math> * # \mbox{La is Dirichlet-to-Neumann opera} * # </math> * # :<math> * # \mbox{D_x is a diagonal matrix w/the vector } x \mbox{ on the diagonal } (D_x 1 = x) * # </math> * # :<math> * # \mbox{D_A is the diagonal matrix, coinciding on diagonal w/the matrix } A * # </math> * # :<math> * # \mbox{y is eigenvalue of operator/matrix} * # </math> * # :<math> * # \mbox{ ma(A) is spectrum of matrix A} \mbox{, zeros of characteristic polynomial } * # </math> * # :<s> * # \mbox{ho(A) is the characteristic polynomial of matrix A} * # </s> * # :<s> * # \tao \mbox{ is the Cayley form} * # </s> * # :<math> * # \mbox{ega is a continuous domain} * # </math> * # :<math> * # \mbox{G/G* is graph or network and its dual} * # </math> * # :<math> * # \mbox{V_G is the set of vertices of a graph} * # </math> * # :<math> * # \mbox{E_G is the set of edges of a graph} * # </math> * # :<math> * # \mbox{M_G is the medial graph of an embedded graph G} * # </math> * # :<math> * # \mbox{c is conductivity} * # </math> * # * # {{BookCat}} * # * # Numbered list item *