From Wikibooks, open books for an open world
Theorem (monotone convergence theorem) :
Let
(
Ω
,
F
,
μ
)
{\displaystyle (\Omega ,{\mathcal {F}},\mu )}
be a measure space, and let
f
n
:
Ω
→
[
0
,
∞
]
{\displaystyle f_{n}:\Omega \to [0,\infty ]}
be an ascending (that is,
f
n
+
1
≥
f
n
{\displaystyle f_{n+1}\geq f_{n}}
pointwise) sequence of non-negative functions, that converges pointwise to a function
f
:
Ω
→
[
0
,
∞
]
{\displaystyle f:\Omega \to [0,\infty ]}
. Then
lim
n
→
∞
∫
Ω
f
n
d
μ
=
∫
Ω
f
d
μ
{\displaystyle \lim _{n\to \infty }\int _{\Omega }f_{n}d\mu =\int _{\Omega }fd\mu }
.
Theorem (Fatou's lemma) :
Let
(
Ω
,
F
,
μ
)
{\displaystyle (\Omega ,{\mathcal {F}},\mu )}
be a measure space, and let
f
n
:
Ω
→
R
≥
0
{\displaystyle f_{n}:\Omega \to \mathbb {R} _{\geq 0}}
be a sequence of non-negative functions. Then
∫
Ω
lim inf
n
→
∞
f
n
d
μ
≤
lim inf
n
→
∞
∫
Ω
f
n
d
μ
{\displaystyle \int _{\Omega }\liminf _{n\to \infty }f_{n}d\mu \leq \liminf _{n\to \infty }\int _{\Omega }f_{n}d\mu }
.
Proof: Note that, upon defining
g
N
:=
inf
k
≥
N
f
n
{\displaystyle g_{N}:=\inf _{k\geq N}f_{n}}
,
that the sequence of functions
g
N
{\displaystyle g_{N}}
is strictly ascending and converges pointwise to
f
{\displaystyle f}
as
N
→
∞
{\displaystyle N\to \infty }
. Hence, the monotone convergence theorem is applicable and we obtain
lim
N
→
∞
∫
Ω
g
N
d
μ
=
∫
Ω
f
d
μ
{\displaystyle \lim _{N\to \infty }\int _{\Omega }g_{N}d\mu =\int _{\Omega }fd\mu }
.
Now for each
N
∈
N
{\displaystyle N\in \mathbb {N} }
, we have
∫
Ω
g
N
d
μ
≤
∫
Ω
f
N
d
μ
{\displaystyle \int _{\Omega }g_{N}d\mu \leq \int _{\Omega }f_{N}d\mu }
,
and if we take the lim inf,
lim
N
→
∞
∫
Ω
g
N
d
μ
=
lim inf
N
→
∞
∫
Ω
g
N
d
μ
≤
lim inf
N
→
∞
∫
Ω
f
N
d
μ
{\displaystyle \lim _{N\to \infty }\int _{\Omega }g_{N}d\mu =\liminf _{N\to \infty }\int _{\Omega }g_{N}d\mu \leq \liminf _{N\to \infty }\int _{\Omega }f_{N}d\mu }
.
◻
{\displaystyle \Box }