# Mathematics Worksheet/Equations of Straight Line

1. Determine the gradient of a segment in line that connecting points:
1. $\!X=(\!4,\!2)$ and $\!Y=(\!-3,\!-4)$ 2. $\!A=(\!-5,\!-2)$ and $\!B=(\!3,\!4)$ 3. $\alpha =(\!5,\!-3)$ and $\beta =(\!-2,\!8)$ 4. $\lambda =(\!-6,\!3)$ and $\Delta =(\!4,\!1)$ 5. $\!P=(\!-4,\!7)$ and $\!Q=(\!6,\!-3)$ 6. $\!E=(\!7,\!5)$ and $\!F=(\!4,\!6)$ 7. $\kappa =(\!-5,\!-2)$ and $\Omega =(\!-4,\!-9)$ 8. $\!M=(\!-3,\!4)$ and $\!N=(\!5,\!-6)$ 9. $\!R=(\!-5,\!1)$ and $\!S=(\!-4,\!-10)$ 10. $\!C=(\!3,\!-5)$ and $\!D=(\!5,\!-3)$ 2. Find the gradient line from:
1. $\!x+\!y=\!14$ 2. $\!3x-\!5y=\!11$ 3. $\!5x+\!4y=\!41$ 4. $\!x-\!y=\!15$ 5. $\!3(\!2x+\!5y)=\!3$ 6. $\!5x-\!y=\!18$ 7. $\!6x+\!3y=\!62$ 8. $\!10x-\!5y=\!75$ 9. $\!7x+\!3y=\!-8$ 10. $\!3x-\!5y=\!-30$ 11. $\!5x+\!9y=\!-2$ 12. $\!4x+\!y=\!0$ 13. $\!6x-\!3y=\!0$ 14. $\!4(\!3x+\!y)=\!8$ 15. $\!2x-\!0,5y=\!-7$ 16. $\!1,5x+\!2,5y=\!21$ 17. $\!2,4x+\!1,5y=\!14,7$ 18. $\!3,2x-\!2,3y=\!5$ 19. $\!4,5x+\!2,7y=\!18,9$ 20. $\!6,7x-\!1,9y=\!19,2$ 3. Draw in the Cartesian diagram if known the four points are:
1. $\!A=\!(\!4,\!-2),\!B=\!(\!3,\!3),\!C=\!(\!-6,\!3),\!D=\!(\!5,\!4)$ 2. $\!A=\!(\!-7,\!-1),\!B=\!(\!4,\!-2),\!C=\!(\!-1,\!-9),\!D=\!(\!-4,\!3)$ 3. $\!A=\!(\!-5,\!5),\!B=\!(\!6,\!-6),\!C=\!(\!-3,\!3),\!D=\!(\!2,\!-2)$ 4. $\!A=\!(\!1,\!-10),\!B=\!(\!-3,\!-6),\!C=\!(\!4,\!7),\!D=\!(\!-6,\!1)$ 5. $\!A=\!(\!-2,\!-2),\!B=\!(\!-5,\!7),\!C=\!(\!1,\!3),\!D=\!(\!-9,\!5)$ 4. From the questions number 3, calculate the gradient of line AB and line CD.
5. From the questions number 3, are the both lines parallel? If not, give the reason.