# Linear Algebra/Propositions

The point at issue in an argument is the
**proposition**.
Mathematicians usually write the point in full before the proof
and label it either **Theorem** for major points, **Corollary**
for points that follow immediately from a prior one, or **Lemma**
for results chiefly used to prove other results.

The statements expressing propositions can be complex, with many subparts. The truth or falsity of the entire proposition depends both on the truth value of the parts, and on the words used to assemble the statement from its parts.

### Not

[edit | edit source]For example, where is a proposition, "it is not the case that " is true provided that is false. Thus, " is not prime" is true only when is the product of smaller integers.

We can picture the "not" operation with a
**Venn diagram**.

Where the box encloses all natural numbers, and inside the circle are the primes, the shaded area holds numbers satisfying "not ".

To prove that a "not " statement holds, show that is false.

### And

[edit | edit source]Consider the statement form " and ". For the statement to be true both halves must hold: " is prime and so is " is true, while " is prime and is not" is false.

Here is the Venn diagram for " and ".

To prove " and ", prove that each half holds.

### Or

[edit | edit source]A " or " is true when either half holds: " is prime or is prime" is true, while " is not prime or is prime" is false. We take "or" inclusively so that if both halves are true " is prime or is not" then the statement as a whole is true. (In everyday speech, sometimes "or" is meant in an exclusive way— "Eat your vegetables or no dessert" does not intend both halves to hold— but we will not use "or" in that way.)

The Venn diagram for "or" includes all of both circles.

To prove " or ", show that in all cases at least one half holds (perhaps sometimes one half and sometimes the other, but always at least one).

### If-then

[edit | edit source]An "if then " statement (sometimes written " materially implies " or just " implies " or "") is true unless is true while is false. Thus "if is prime then is not" is true while "if is prime then is also prime" is false. (Contrary to its use in casual speech, in mathematics "if then " does not connote that precedes or causes .)

More subtly, in mathematics "if then " is
true when is false:
"if is prime then is prime" and
"if is prime then is not" are both true statements,
sometimes said to be **vacuously true**.
We adopt this convention because we want statements like "if
a number is a perfect square then it is not prime" to be true, for
instance when the number is or when the number is .

The diagram

shows that holds whenever does (another phrasing is " is sufficient to give "). Notice again that if does not hold, may or may not be in force.

There are two main ways to establish an implication.
The first way is direct: assume that is true and, using that
assumption, prove .
For instance,
to show "if a number is divisible by 5 then twice that
number is divisible by 10", assume that the number is and
deduce that .
The second way is indirect: prove the
**contrapositive**
statement: "if is false then is false"
(rephrased, " can only be false when is also false").
As an example, to show "if a number is prime then it
is not a perfect
square", argue that if it were a square then it could be
factored where and so wouldn't be prime
(of course or don't give but they
are nonprime by definition).

Note two things about this statement form.

First, an "if then " result can sometimes be improved by weakening or strengthening . Thus, "if a number is divisible by then its square is also divisible by " could be upgraded either by relaxing its hypothesis: "if a number is divisible by then its square is divisible by ", or by tightening its conclusion: "if a number is divisible by then its square is divisible by ".

Second, after showing "if then ", a good next step is to look into whether there are cases where holds but does not. The idea is to better understand the relationship between and , with an eye toward strengthening the proposition.

### Equivalence

[edit | edit source]An if-then statement cannot be improved when not only does imply , but also implies . Some ways to say this are: " if and only if ", " iff ", " and are logically equivalent", " is necessary and sufficient to give ", "". For example, "a number is divisible by a prime if and only if that number squared is divisible by the prime squared".

The picture here shows that and hold in exactly the same cases.

Although in simple arguments a chain like " if and only if , which holds if and only if ..." may be practical, typically we show equivalence by showing the "if then " and "if then " halves separately.