# Linear Algebra/Linear Dependance of Columns

Let C1, C2, C3, ..., Cn be n columns of m numbers ${\displaystyle C_{n}={\begin{bmatrix}a_{1n}\\a_{2n}\\a_{3n}\\\vdots \\a_{mn}\\\end{bmatrix}}}$.

A linear combination of columns n1C1+n2C2+n3C3+...+nnCn is the column

${\displaystyle C_{n}={\begin{bmatrix}c_{1}\\c_{2}\\c_{3}\\\vdots \\c_{n}\\\end{bmatrix}}}$.

Where ck=n1ak1+n1ak1+n2ak2+n3ak3+...+nnakn.

## Theorem

If there is a determinant of order n which is A=aij, and there are n columns of n elements such that the ith entry of the jth column is equal to aij, then if one of the columns is a linear combination of the other columns, then the determinant is equal to 0.

### Proof

Suppose that the kth column is a linear combination of the other column,

${\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}&\ldots &c_{1}a_{11}+c_{2}a_{12}+c_{3}a_{13}+\ldots +c_{n}a_{1}n&\ldots &a_{1n}\\a_{21}&a_{22}&a_{23}&\ldots &c_{1}a_{21}+c_{2}a_{22}+c_{3}a_{23}+\ldots +c_{n}a_{2}n&\ldots &a_{2n}\\a_{31}&a_{23}&a_{33}&\ldots &c_{1}a_{31}+c_{2}a_{32}+c_{3}a_{33}+\ldots +c_{n}a_{3}n&\ldots &a_{3n}\\\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\a_{n1}&a_{n3}&a_{n3}&\ldots &c_{1}a_{n1}+c_{2}a_{n2}+c_{3}a_{n3}+\ldots +c_{n}a_{n}n&\ldots &a_{nn}\\\end{bmatrix}}}$.

Then by the linearity of determinants, the determinant is equal to

${\displaystyle c_{1}{\begin{bmatrix}a_{11}&a_{12}&a_{13}&\ldots &a_{11}&\ldots &a_{1n}\\a_{21}&a_{22}&a_{23}&\ldots &a_{21}&\ldots &a_{2n}\\a_{31}&a_{23}&a_{33}&\ldots &a_{31}&\ldots &a_{3n}\\\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\a_{n1}&a_{n3}&a_{n3}&\ldots &a_{n1}&\ldots &a_{nn}\\\end{bmatrix}}+c_{2}{\begin{bmatrix}a_{11}&a_{12}&a_{13}&\ldots &a_{12}&\ldots &a_{1n}\\a_{21}&a_{22}&a_{23}&\ldots &a_{22}&\ldots &a_{2n}\\a_{31}&a_{23}&a_{33}&\ldots &a_{32}&\ldots &a_{3n}\\\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\a_{n1}&a_{n3}&a_{n3}&\ldots &a_{n2}&\ldots &a_{nn}\\\end{bmatrix}}+c_{3}{\begin{bmatrix}a_{11}&a_{12}&a_{13}&\ldots &a_{13}&\ldots &a_{1n}\\a_{21}&a_{22}&a_{23}&\ldots &a_{23}&\ldots &a_{2n}\\a_{31}&a_{23}&a_{33}&\ldots &a_{33}&\ldots &a_{3n}\\\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\a_{n1}&a_{n3}&a_{n3}&\ldots &a_{n3}&\ldots &a_{nn}\\\end{bmatrix}}+\ldots +c_{n}{\begin{bmatrix}a_{11}&a_{12}&a_{13}&\ldots &a_{1n}&\ldots &a_{1n}\\a_{21}&a_{22}&a_{23}&\ldots &a_{2n}&\ldots &a_{2n}\\a_{31}&a_{23}&a_{33}&\ldots &a_{3n}&\ldots &a_{3n}\\\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\a_{n1}&a_{n3}&a_{n3}&\ldots &a_{nn}&\ldots &a_{nn}\\\end{bmatrix}}}$.

Since all of those matrices have repeat columns, their determinants are 0, and so their sum is 0.

## Rank of a Matrix

The rank of a matrix is the maximum order of a minor that does not equal 0. The minor of a matrix with the order of the rank of the matrix is called a basis minor of the matrix, and the columns that the minor includes are called the basis columns.