Jump to content

LLVM Compiler/Installation

From Wikibooks, open books for an open world

Installing Pre-build Binaries

[edit | edit source]

on Ubuntu

  • sudo apt-get install clang llvm

Installing from github master

[edit | edit source]

Hardware/Operating system

  • Azure VM | Standard NC6_Promo (6 vcpus, 56 GiB memory)
  • Tesla K80, which has compute capability 3.7. You can find out what card you got via lshw -C display; you can find out the compute capability of your card https://developer.nvidia.com/cuda-gpus .
  • Linux (ubuntu 18.04)

Prerequisites

[edit | edit source]
sudo apt update
sudo apt install build-essential
sudo apt install cmake
sudo apt install -y libelf-dev libffi-dev
sudo apt install -y pkg-config

Install CUDA 10.2 , using instructions https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=debnetwork

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo apt-get update
sudo apt-get -y install cuda

After installation, export two environment variables, vim ~/.bashrc to add two lines

  • export PATH=$PATH:/usr/local/cuda-10.2/bin/
  • export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.2/lib/

Get source packages

[edit | edit source]

Assuming you are in your home directory

cd

git clone https://github.com/llvm/llvm-project.git

Build using GCC

[edit | edit source]
mkdir build

cd build/

cmake  -DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra;libcxx;libcxxabi;lld;openmp"   \ 
    -DCMAKE_BUILD_TYPE=Release   \
    -DLLVM_TARGETS_TO_BUILD="X86;NVPTX"     \
    -DCMAKE_INSTALL_PREFIX=$(pwd)/../llvm   \
    -DCLANG_OPENMP_NVPTX_DEFAULT_ARCH=sm_37    \
    -DLIBOMPTARGET_NVPTX_COMPUTE_CAPABILITIES=35,37,50,52,60,61,70,75  \
    -DCMAKE_C_COMPILER=gcc    \
    -DCMAKE_CXX_COMPILER=g++   \
    -G "Unix Makefiles" ../llvm-project/llvm

time make -j
time make -j install


Explanation for configuration options

  • -DCMAKE_C_COMPILER=gcc // the C compiler used to compile clang/llvm, GCC
  • -DCMAKE_CXX_COMPILER=g++ // the C++ compiler used to compile clang/llvm: G++
  • -DLLVM_TARGETS_TO_BUILD=X86;PowerPC;NVPTX;AMDGPU // explicitly specify target devices to support, Intel ,Nvidia, IBM, and AMD CPUs or GPUs
  • -DCLANG_OPENMP_NVPTX_DEFAULT_ARCH=sm_70 // default GPU computing capability version to support, https://developer.nvidia.com/cuda-gpus lists such information.
  • -DLIBOMPTARGET_NVPTX_COMPUTE_CAPABILITIES=37,60,70 // all GPU computing capability versions to build in libomptarget

Other optional options

  • -DGCC_INSTALL_PREFIX=${GCC_PATH}
  • -DCMAKE_C_COMPILER=${GCC_PATH}/bin/gcc
  • -DCMAKE_CXX_COMPILER=${GCC_PATH}/bin/g++
  • -DCMAKE_Fortran_COMPILER=${GCC_PATH}/bin/gfortran
  • -DCUDA_PATH= // this option should be automatically set if cuda is in your search path
  • -DCUDA_TOOLKIT_ROOT_DIR= // this option should be automatically set if cuda is in your search path
  • -DOPENMP_ENABLE_LIBOMPTARGET=ON // this should be on by default
  • -DLIBOMP_FORTRAN_MODULES=ON
  • -DBUILD_SHARED_LIBS=OFF // turn off shared libs

More examples

  • cmake -G Ninja -DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra;libcxx;libcxxabi;lld;openmp" -DCMAKE_INSTALL_PREFIX=/Users/abc/llvm-research/inst-10.0.1 -DCMAKE_BUILD_TYPE=Debug ../llvm/
  • ninja -j8
  • ninja install

Rebuild using Clang

[edit | edit source]

add the path to the installed clang, vim ~/.bashrc

export PATH=~/llvm/bin:$PATH
export LD_LIBRARY_PATH=~/llvm/lib:$LD_LIBRARY_PATH

cd 
build-openmp
cd build-openmp/

cmake -DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra;libcxx;libcxxabi;lld;openmp"  \
 -DCMAKE_BUILD_TYPE=Release \
 -DLLVM_TARGETS_TO_BUILD="X86;NVPTX"  \
 -DCMAKE_INSTALL_PREFIX=$(pwd)/../llvm  \
 -DCLANG_OPENMP_NVPTX_DEFAULT_ARCH=sm_37   \
 -DLIBOMPTARGET_NVPTX_COMPUTE_CAPABILITIES=35,37,50,52,60,61,70,75    \
 -DCMAKE_C_COMPILER=clang  \
 -DCMAKE_CXX_COMPILER=clang++   \
 -G "Unix Makefiles" ../llvm-project/llvm

 make -j
 make -j install

Optional options, explictly turn on bitcode lib, and the compiler/linker to build it

  • -DLIBOMPTARGET_NVPTX_ENABLE_BCLIB=true
  • -DLIBOMPTARGET_NVPTX_CUDA_COMPILER=${PREFIX}/bin/clang
  • -DLIBOMPTARGET_NVPTX_BC_LINKER=${PREFIX}/bin/llvm-link

Installing from releases

[edit | edit source]

Hardware/Operating system

  • Azure VM | Standard NC6_Promo (6 vcpus, 56 GiB memory)
  • Tesla K80, which has compute capability 3.7. You can find out what card you got via lshw -C display; you can find out the compute capability of your card here.
  • Linux (ubuntu 18.04)

Prerequisites

[edit | edit source]
sudo apt update
sudo apt install build-essential
sudo apt install cmake
sudo apt install -y libelf-dev libffi-dev
sudo apt install -y pkg-config

Install CUDA 10.2 , using instructions https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=debnetwork

Assuming you current path is

  • /home/ubuntu/omp5-gpu-llvm
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo apt-get update
sudo apt-get -y install cuda

After installation, export two environment variables, vim ~/.bashrc to add two lines

  • export PATH=$PATH:/usr/local/cuda-10.2/bin/
  • export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.2/lib/

Get source packages

[edit | edit source]

Three steps to download, untar, and put them into the right locations.

wget https://github.com/llvm/llvm-project/releases/download/llvmorg-10.0.0/llvm-10.0.0.src.tar.xz
wget https://github.com/llvm/llvm-project/releases/download/llvmorg-10.0.0/clang-10.0.0.src.tar.xz
wget https://github.com/llvm/llvm-project/releases/download/llvmorg-10.0.0/openmp-10.0.0.src.tar.xz
wget https://github.com/llvm/llvm-project/releases/download/llvmorg-10.0.0/compiler-rt-10.0.0.src.tar.xz


tar xf llvm-10.0.0.src.tar.xz
tar xf clang-10.0.0.src.tar.xz
tar xf openmp-10.0.0.src.tar.xz
tar xf compiler-rt-10.0.0.src.tar.xz

mv clang-10.0.0.src llvm-10.0.0.src/tools/clang
mv openmp-10.0.0.src llvm-10.0.0.src/projects/openmp
mv compiler-rt-10.0.0.src llvm-10.0.0.src/projects/compiler-rt

In the end, the directory layout should look like

  • llvm-10.0.0.src
    • tools/clang
    • projects/openmp
    • projects/compiler-rt

Build the Compiler with OpenMP offloading support

[edit | edit source]

You need to know the Compute Capability version of your GPU. https://developer.nvidia.com/cuda-gpus lists such information. For example, some typical GPUs and their CC versions are:

  • Tesla K80 3.7, sm_37
  • Tesla P100 6.0, sm_37
  • Tesla V100 7.0, sm_37
mkdir build
cd build

# this step is to generate a make file using cmake. picking gcc/g++ as the compiler
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=$(pwd)/../install \
	-DCLANG_OPENMP_NVPTX_DEFAULT_ARCH=sm_37 \
        -DCMAKE_C_COMPILER=gcc    \
        -DCMAKE_CXX_COMPILER=g++   \
	-DLIBOMPTARGET_NVPTX_COMPUTE_CAPABILITIES=37,60,70 ../llvm-10.0.0.src

# the screen output of the step above should show the following info: 
# -- Found LIBOMPTARGET_DEP_CUDA_DRIVER: /usr/lib/x86_64-linux-gnu/libcuda.so
# -- LIBOMPTARGET: Building offloading runtime library libomptarget.
# -- LIBOMPTARGET: Building CUDA offloading plugin.
# -- LIBOMPTARGET: Building x86_64 offloading plugin.

make -j6

make install -j6

After the installation, you should expand your PATH and LD_LIBRARY_PATH again

  • export PATH=$PATH:/home/ubuntu/omp5-gpu-llvm/install/bin
  • export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/ubuntu/omp5-gpu-llvm/install/lib

Rebuild the OpenMP runtime libraries

[edit | edit source]

You should use the freshly installed clang to rebuild the OpenMP runtime library

cd /home/ubuntu/omp5-gpu-llvm
mkdir build-openmp
cd build-openmp

cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=$(pwd)/../install \
	-DCMAKE_C_COMPILER=$(pwd)/../install/bin/clang \
	-DCMAKE_CXX_COMPILER=$(pwd)/../install/bin/clang++ \
	-DLIBOMPTARGET_NVPTX_COMPUTE_CAPABILITIES=37,60,70 \
	../llvm-10.0.0.src/projects/openmp

make -j6
make install -j6

Test the installation

[edit | edit source]

save the following code into a file named ongpu.c


#include <stdio.h>
#include <omp.h>

int main()
{
  int runningOnGPU = 0;
  /* Test if GPU is available using OpenMP4.5 */
#pragma omp target map(from:runningOnGPU)
  {
    if (omp_is_initial_device() == 0)
      runningOnGPU = 1;
  }
  /* If still running on CPU, GPU must not be available */
  if (runningOnGPU)
    printf("### Able to use the GPU! ### \n");
  else
    printf("### Unable to use the GPU, using CPU! ###\n");

  return 0;
}

Compile and run it

clang -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda ongpu.c

 ./a.out

### Able to use the GPU! ###

Troubleshooting

[edit | edit source]

error while loading libomp.so

[edit | edit source]

./a.out: error while loading shared libraries: libomp.so: cannot open shared object file: No such file or directory solution

  • export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/pathTo/installed-llvm/lib
[edit | edit source]