Jump to content

Geometry/Neutral Geometry/Euclid's First Four Postulates

From Wikibooks, open books for an open world

Euclid's Postulate I

[edit | edit source]

For every point P and for every point Q not equal to P there exists a unique line that passes through P and Q

Explanation

[edit | edit source]

Informally, this postulate says that two points determine a unique line.

Euclid's Postulate II

[edit | edit source]

For every segment AB and for every segment CD there exists a unique point E on line AB (needs LaTex formatting) such that B is between A and E and segment CD is congruent to segment BE

Explanation

[edit | edit source]

[To Come]

Euclid's Postulate III

[edit | edit source]

For every point O and every point A not equal to O, there exists a circle with center O and radius OA

Explanation

[edit | edit source]

[To Come]

Euclid's Postulate IV

[edit | edit source]

All right angles are congruent to one another

Explanation

[edit | edit source]

[To Come]