# GLPK/Steps of GMPL File Processing

This page describes the steps that GLPK takes when processing a model written in GMPL (also known as MathProg).

## Contents

## Processing steps[edit]

GLPK solves a model in a series of steps.

### Model section translation[edit]

The model section of the GMPL file is parsed and internal
structures describing the different objects, such as variables,
constraints, and expressions, are created.
This phase is executed by the function `glp_mpl_read_model`.

### Data section translation[edit]

The data section of the model file is used to initialize
parameters and sets. If the data section is contained within the model file, this phase is
executed by the function `glp_mpl_read_model`. If data files are (optionally) provided,
this phase is executed by the function `glp_mpl_read_data`.

### Model generation[edit]

In this phase, the statements and expressions of the model up
to the GMPL solve statement, are evaluated. This phase is executed by
the function `glp_mpl_generate`.
Model generation can be computationally expensive and users should expect the
process of generating large or complex models to take time.

The constraints themselves are normalized according to the following rules:

Original form | Standard form |
---|---|

Dual values are calculated using the **standard form** of the constraint. This implies that, in the following example, the dual value of `c2` will take the opposite sign relative to the dual value of `c1` for the *otherwise equivalent* constraint formulations:

s.t. c1 : 3 * z = 1; s.t. c2 : 1 = 3 * z;

Care is therefore required when interpreting the dual values for nonstandard constraints. Conversely, good practice suggests using the standard forms where practical.

### Model building[edit]

The problem instance for the solver is created. This phase is
executed by the function `glp_mpl_build_prob`.
This call will fail if not preceded by a call to
`glp_mpl_generate`.

### Solution[edit]

A solution is attempted by calling the appropriate solver: simplex, interior-point, or MIP.

### Postsolving[edit]

The results of the solver call are transferred back to the GMPL variables
and constraints. All statements after the solve statement in
the model file are executed. This phase is executed by function
`glp_mpl_postsolve`.

## Further study[edit]

More details can be obtained by examining:

- function
`glp_main`in implementation file`src/glpapi19.c`(as of GLPK 4.45) - the example in chapter 3.2
*Routines for processing MathProg models*in`doc/glpk.pdf`from the source distribution.

## Prescribed starts[edit]

It is not possible to specify a feasible (but possibly suboptimal) starting solution when using GLPSOL — but this feature is supported when programming with the GLPK API using the callback hook of the branch-and-cut algorithm.