# Fractals/Mathematics/group/Basilica group

Basilica group is :

• group defined by automatum
• the iterated monodromy group of the polynomial $z^{2}-1$ • related with Basilica Julia set : "the scaling limit of the Schreier graphs of its action on level n of T is the basilica"

## Computation

The critical points of the polynomial $z^{2}-1$ are $\infty$ and $0$ .

The postcritical set is $P=\left\{0,-1,\infty \right\}$ ## FR

predefined by FR package of GAP CAS. Here BinaryKneadingGroup("1") is BasilicaGroup.

gap> BinaryKneadingGroup(1/3)=BasilicaGroup;
true


or :

gap> B := FRGroup("a=<1,b>(1,2)","b=<1,a>",IsFRMealyElement);
<state-closed group over [ 1, 2 ] with 2 generators>
gap> AssignGeneratorVariables(B);
#I  Assigned the global variables [ "a", "b" ]
gap> B=BasilicaGroup;
#I  \=: converting second argument to FR element
#I  \<: converting second argument to FR element
#I  \<: converting second argument to FR element
#I  \=: converting second argument to FR element
#I  \=: converting second argument to FR element
#I  \<: converting second argument to FR element
#I  \<: converting second argument to FR element
#I  \=: converting second argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
true

gap> Size(BasilicaGroup);
infinity
gap> GeneratorsOfGroup(BasilicaGroup);
[ a, b ]
gap> Alphabet(BasilicaGroup);
[ 1, 2 ]
gap> KnownAttributesOfObject(BasilicaGroup);
[ "Name", "Representative", "OneImmutable", "GeneratorsOfMagma", "GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement", "UnderlyingFRMachine", "Correspondence",
"AlphabetOfFRSemigroup", "NucleusOfFRSemigroup", "FRGroupPreImageData", "KneadingSequence", "Alphabet" ]
gap> KnownPropertiesOfObject(BasilicaGroup);
[ "IsDuplicateFree", "IsAssociative", "IsSimpleSemigroup", "IsFinitelyGeneratedGroup", "IsStateClosed", "IsBoundedFRSemigroup", "IsAmenableGroup" ]