Fractals/Mathematics/group/Basilica group

From Wikibooks, open books for an open world
Jump to navigation Jump to search
Basilica JUlia set and external rays
Lamination of Basilica Julia set
NucleusMachine(BasilicaGroup)

Basilica group is :[1]

  • group defined by automatum
  • the iterated monodromy group of the polynomial [2]
  • related with Basilica Julia set : "the scaling limit of the Schreier graphs of its action on level n of T is the basilica"[3]

Computation[edit]

The critical points of the polynomial are and .

The postcritical set is

FR[edit]

predefined by FR package of GAP CAS. Here BinaryKneadingGroup("1") is BasilicaGroup.

gap> BinaryKneadingGroup(1/3)=BasilicaGroup;
true

or :

gap> B := FRGroup("a=<1,b>(1,2)","b=<1,a>",IsFRMealyElement);
<state-closed group over [ 1, 2 ] with 2 generators>
gap> AssignGeneratorVariables(B);
#I  Assigned the global variables [ "a", "b" ]
gap> B=BasilicaGroup;
#I  \=: converting second argument to FR element
#I  \<: converting second argument to FR element
#I  \<: converting second argument to FR element
#I  \=: converting second argument to FR element
#I  \=: converting second argument to FR element
#I  \<: converting second argument to FR element
#I  \<: converting second argument to FR element
#I  \=: converting second argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
#I  \=: converting first argument to FR element
true
gap> Size(BasilicaGroup);
infinity
gap> GeneratorsOfGroup(BasilicaGroup);
[ a, b ]
gap> Alphabet(BasilicaGroup);
[ 1, 2 ]
gap> KnownAttributesOfObject(BasilicaGroup);
[ "Name", "Representative", "OneImmutable", "GeneratorsOfMagma", "GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement", "UnderlyingFRMachine", "Correspondence", 
"AlphabetOfFRSemigroup", "NucleusOfFRSemigroup", "FRGroupPreImageData", "KneadingSequence", "Alphabet" ]
gap> KnownPropertiesOfObject(BasilicaGroup);
[ "IsDuplicateFree", "IsAssociative", "IsSimpleSemigroup", "IsFinitelyGeneratedGroup", "IsStateClosed", "IsBoundedFRSemigroup", "IsAmenableGroup" ]
gap> KneadingSequence(BasilicaGroup);
[/ '1', '*' ]

References[edit]

  1. A Thompson Group for the Basilica by James Belk, Bradley Forrest
  2. R. I. Grigorchuk and A. Zuk (2002a). On a torsion-free weakly branch group defined by a three state automaton. Internat. J. Algebra Comput., 12(1-2):223–246. International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000).
  3. Amenability via random walks Laurent Bartholdi and Balint Virag May 19, 2003