Fractals/Iterations in the complex plane/Fatou coordinate for f(z)=z^2 + c

From Wikibooks, open books for an open world
Jump to navigation Jump to search
TODO

Editor's note
This book is still under development. Please help us


on the boundary of main cardioid[edit]

"constructing approximate Fatou coordinates for analytic maps f in a neighborhood of an f 0 (z) = z + z q+1 + ... with q > 1"[1][2][3]

  • "The first step in constructing Fatou coordinate for consists in lifting to a neighborhood of infinity by the coordinate change " [4]

1/1[edit]

Max distance from parabolic orbits to the fixed point = 0.7071067811865476

1/2[edit]

Construction of a potential flow.svg

1/3[edit]

Orbits near fixed point
Critical orbit for f(z)=z^2 + mz where p/q=1/3 with attracting and repelling vectors

It is based on : "PARABOLIC IMPLOSION A MINI-COURSE" by ARNAUD CHERITAT.

Let's take lambda form of quadratic map :

where is a multiplier of fixed point ( here fixed point is a origin z= 0 )

When numerator p and denominator q of internal angle are :

then internal angle in turns is :[6]

and stability index of fixed point ( internal radius ) is :

Note that Cheritat uses not

Then q iteration of quadratic map :

Number k :

for some

if m=1 then k = q+1 = 4

Take k term in the expansion of denoted as  :

so

Evaluate multiplier

and C :

Let :

then prepared coordinate or pre-Fatou coordinate u are :

Here is Maxima CAS session ( where m is used for multiplier ) :

(%i1) f(z):=m*z + z^2;
(%o1) f(z):=m*z+z^2
(%i2) z3:f(f(f(z)));
(%o2) ((z^2+m*z)^2+m*(z^2+m*z))^2+m*((z^2+m*z)^2+m*(z^2+m*z))
(%i3) z3:expand(z3);
(%o3) z^8+4*m*z^7+6*m^2*z^6+2*m*z^6+4*m^3*z^5+6*m^2*z^5+m^4*z^4+6*m^3*z^4+m^2*z^4+m*z^4+2*m^4*z^3+2*m^3*z^3+2*m^2*z^3+m^4*z^2+m^3*z^2+m^2*z^2+m^3*z
(%i4) k:4;
(%o4) 4
(%i5) C:coeff(z3,z,k);
(%o5) m^4+6*m^3+m^2+m
(%i14) m:exp(2*%pi*%i/3);
(%o14) (sqrt(3)*%i)/2-1/2
(%i15) m:float(rectform(m));
(%o15) 0.86602540378444*%i-0.5
(%i19) C:float(rectform(ev(C)));
(%o19) 0.86602540378444*%i+4.499999999999998

Next session :

(%i1) z:zx+zy*%i;
(%o1) %i*zy+zx
(%i3) C:Cx+Cy*%i;
(%o3) %i*Cy+Cx
(%i4) r:3;
(%o4) 3
(%i5) u:-1/(r*C*z^r);
(%o5) -1/(3*(%i*Cy+Cx)*(%i*zy+zx)^3)
(%i8) u:expand(u);
(%o8) -1/(3*Cy*zy^3-3*%i*Cx*zy^3-9*%i*Cy*zx*zy^2-9*Cx*zx*zy^2-9*Cy*zx^2*zy+9*%i*Cx*zx^2*zy+3*%i*Cy*zx^3+3*Cx*zx^3)
(%i9) realpart(u);
(%o9) -(3*Cy*zy^3-9*Cx*zx*zy^2-9*Cy*zx^2*zy+3*Cx*zx^3)/((3*Cy*zy^3-9*Cx*zx*zy^2-9*Cy*zx^2*zy+3*Cx*zx^3)^2+(-3*Cx*zy^3-9*Cy*zx*zy^2+9*Cx*zx^2*zy+3*Cy*zx^3)^2)
(%i10) imagpart(u);
(%o10) -(3*Cx*zy^3+9*Cy*zx*zy^2-9*Cx*zx^2*zy-3*Cy*zx^3)/((3*Cy*zy^3-9*Cx*zx*zy^2-9*Cy*zx^2*zy+3*Cx*zx^3)^2+(-3*Cx*zy^3-9*Cy*zx*zy^2+9*Cx*zx^2*zy+3*Cy*zx^3)^2)

... ( to do )

References[edit]

  1. Classification of diffeomorphisms and ε-neighborhoods of orbits Maja Resman, University of Zagreb, Croatia
  2. The resurgent character of the Fatou coordinates of a simple parabolic germ Artem Dudko (SUNY), David Sauzin
  3. Dynamics of Holomorphic Maps: Resurgence of Fatou coordinates, and Poly-time Computability of Julia Sets Author: Dudko, Artem
  4. LIOUVILLE THEOREM WITH PARAMETERS: ASYMPTOTICS OF CERTAIN RATIONAL INTEGRALS IN DIFFERENTIAL FIELDS by MALGORZATA STAWISKA
  5. Polynomial maps with a Julia set of positive Lebesgue measure: Fibonacci maps ∗ Sebastian van Strien, University of Amsterdam, the Netherlands Tomasz Nowicki,
  6. PARABOLIC IMPLOSION A MINI-COURSE by ARNAUD CHERITAT