# Fluid Mechanics Applications/B19: VISCOUS FLOW

A Wikibookian has nominated this page for cleanup because:This page is very difficult to read and the grammar is quite poor. Additionally there are formatting problems. You can help make it better. Please review any relevant discussion. |

A Wikibookian has nominated this page for cleanup because:This page is very difficult to read and the grammar is quite poor. Additionally there are formatting problems. You can help make it better. Please review any relevant discussion. |

## The Logarithmic Overlap Law

[edit | edit source]There are three regions in turbulent flow near a wall:

- Wall layer: Viscous shear dominates.
- Outer layer: Turbulent shear dominates.
- Overlap layer: Both types of shear are important.

From now on let us agree to drop the over bar from velocity . Let be the wall shear stress, and let and represent the thickness and velocity at the edge of the outer layer,

For the wall layer, Prandtl deduced in 1930 that must be independent of the shear layer thickness

By dimensional analysis, this is equivalent to

u +=u/u*=F(yu*/v)

u*=(τw/ρ)1/2

Above equation is called the law of the wall, and the quantity u* is termed the friction velocity because it has dimensions {LT-1}, although it is not actually a flow velocity. Subsequently, Kármán in 1933 deduced that u in the outer layer is independent of molecular viscosity, but its deviation from the stream velocity U must depend on the layer thickness and the other properties:

(U-u)outer =g(δ,τw,ρ,y)

Again, by dimensional analysis we rewrite this as

(U-u)/u*=G(y/δ)

where u* has the same meaning. This equation is called the velocity-defect law for the outer layer. Both the wall law and the defect law are found to be accurate for a wide variety of experimental turbulent duct and boundary-layer flows [1 to 3]. They are different in form, yet they must overlap smoothly in the intermediate layer. In 1937 C. B. Millikan showed that this can be true only if the overlap-layer velocity varies logarithmically with y:

u*/u = (1/K)ln(yu*/v) +B

OVERLAP LAYER

Over the full range of turbulent smooth wall flows, the dimensionless constants K and B are found to have the approximate values K= 0.41 and B=5.0 Above equation is called the logarithmic-overlap layer.

Thus by dimensional reasoning and physical insight we infer that a plot of u versus ln y in a turbulent-shear layer will show a curved wall region, a curved outer region, and a straight-line logarithmic overlap. Figure given below shows that this is exactly the case.

The four outer-law profiles shown all merge smoothly with the logarithmic overlap law but have different magnitudes because they vary in external pressure gradient .the wall law follows the linear viscous relation

u+ =u/u* = yu*/v = y+

from the wall to about y+ =5, therefore curving over to merge with the logarithmic law at about y+ =30.

## Advanced Modeling Concepts

[edit | edit source]Turbulence modeling is a very active field. Now a research available, which is confined to the use of the logarithmic law for pipe and boundary layer problems.

-ρU'V' =τ(turbulent) =μdu/dy

where

μ =ρL²du/dy

Where μ is the property of the flow, not the fluid, is called the eddy viscosity and can be modeled in various ways and L is called the mixing length of the turbulent eddies. Near a solid wall, L is approximately proportional to distance from the wall, according to Karman:

L = ky

where

k = Karman’s constant = 0.41

## Conclusion

[edit | edit source]We have seen that in the turbulence flow, if we take the time averaging values of velocity and pressure in the continuity and momentum equation than the reduced continuity equation is same but reduced momentum equation is changed causes turbulent stresses developed in the flow, in which laminar shear is dominated near the wall and turbulent shear dominates in the outer layer, the intermediate region is called overlap layer. We have also seen that the experimentally verification of the inner, outer and overlap layer laws relating velocity profile in turbulence wall flow in which actually approximates nearly the entire velocity profile, except for the outer law when the pressure is increasing strongly downstream. Modern turbulence models approximate three-dimensional turbulent flows and employ additional partial differential equations for such quantities as the turbulence kinetic energy, the turbulent dissipation, and the six Reynolds stresses.

## References

[edit | edit source]- Fluid Mechanics(SI UNIT)-Seventh edition, by FRANK M WHITE.
- Engineering Fluid Mechanics, by Prof. K. L. KUMAR
- INTERNET