Deutsch: Diese Abbildung zeigt die Exponentialabbildung vom Tangentialraum auf die Sphäre.
Polski: Ta figura przedstawia wykładnicze mapowanie z przestrzeni stycznej do kuli. Mapa wykładnicza w punkcie kuli: jest zdefiniowana na całej płaszczyźnie, ale nie jeden do jednego.
English: This figure shows the exponential mapping from the tangent space to the sphere. The exponential map at a point of a sphere: it is defined on the entire plane but not one-to-one.
The exponential map at a point of a sphere; geodesic symmetry consists of taking the image of a vector and its opposite.
Français : L'application exponentielle en un point d'une sphère : elle est définie sur le plan entier mais non bijective.
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
You may select the license of your choice.
Captions
Add a one-line explanation of what this file represents
{{Information |Description={{de|1=Diese Abbildung zeigt die Exponentialabbildung vom Tangentialraum auf die Sphäre.}} |Source={{own}} |Author=Christian1985 |Date=29.09.2010 |Permission= |other_versions= }} [[Category:Differential