From Wikibooks, open books for an open world
For all
and for all
there exists
such that
.
Let us define a set
.
This set is non-empty (for
) and has an upper-bound
(for all
we get
).
Therefore, by the completeness axiom of the real numbers it has a supremum
. We shall show that
.
- Suppose that
.
- It is sufficient to find
such that
:
![{\displaystyle {\begin{aligned}(x+\varepsilon )^{n}&=\sum _{k\,=\,0}^{n}{\binom {n}{k}}x^{n-k}\varepsilon ^{k}\\&=x^{n}+\sum _{k\,=\,1}^{n}{\binom {n}{k}}x^{n-k}\varepsilon ^{k}\\&\leq x^{n}+\sum _{k\,=\,1}^{n}{\binom {n}{k}}x^{n-k}\varepsilon \qquad :\varepsilon ^{k}\leq \varepsilon \\&=x^{n}+\varepsilon \sum _{k\,=\,1}^{n}{\binom {n}{k}}x^{n-k}\\&=x^{n}+\varepsilon \left(\,\sum _{k\,=\,0}^{n}{\binom {n}{k}}x^{n-k}-x^{n}\right)\\&=x^{n}+\varepsilon {\bigl [}(x+1)^{n}-x^{n}{\bigr ]}<y\\\varepsilon &<\min \left\{1,{\frac {y-x^{n}}{(x+1)^{n}-x^{n}}}\right\}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f7ed6a9284ae7a8bc46342ad5573aafa95e5298b)
- hence
, but
and so
. A contradiction.
- Suppose that
.
- As before, it is sufficient to find
such that
:
![{\displaystyle {\begin{aligned}(x-\varepsilon )^{n}&=\sum _{k\,=\,0}^{n}{\binom {n}{k}}x^{n-k}(-\varepsilon )^{k}\\&=x^{n}+\sum _{k\,=\,1}^{n}{\binom {n}{k}}x^{n-k}(-\varepsilon )^{k}\\&\geq x^{n}+\sum _{k\,=\,1}^{n}{\binom {n}{k}}x^{n-k}(-\varepsilon )\qquad :(-\varepsilon )^{k}\geq -\varepsilon \\&=x^{n}-\varepsilon \sum _{k\,=\,1}^{n}{\binom {n}{k}}x^{n-k}\\&=x^{n}-\varepsilon \left(\,\sum _{k\,=\,0}^{n}{\binom {n}{k}}x^{n-k}-x^{n}\right)\\&=x^{n}-\varepsilon {\bigl [}(x+1)^{n}-x^{n}{\bigr ]}>y\\\varepsilon &<\min \left\{1,{\frac {x^{n}-y}{(x+1)^{n}-x^{n}}}\right\}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c22bfb9aec46f700ac314ff9e8c9e0fd49dcd777)
- hence
, but
and so
. A contradiction.
Therefore
.