# Electronics Handbook/Circuits/Operational Amplifier Configurations

## Linear Configurations

Type Configuration ${\frac {V_{o}}{V_{i}}}$ Inverting amplifier $V_{\mathrm {out} }=-V_{\mathrm {in} }\left({R_{f} \over R_{1}}\right)$ Non-inverting amplifier $V_{\mathrm {out} }=V_{\mathrm {in} }\left(1+{R_{2} \over R_{1}}\right)$ Voltage follower $V_{\mathrm {out} }=V_{\mathrm {in} }\!\$ Summing amplifier $V_{\mathrm {out} }=-R_{\mathrm {f} }\left({V_{1} \over R_{1}}+{V_{2} \over R_{2}}+\cdots +{V_{n} \over R_{n}}\right)$ Integrating amplifier $V_{\mathrm {out} }=\int _{0}^{t}-{V_{\mathrm {in} } \over RC}\,dt+V_{\mathrm {initial} }$ Differentiating amplifier $V_{\mathrm {out} }=-RC\left({dV_{\mathrm {in} } \over dt}\right)$ Schmitt trigger Hysteresis from ${\frac {-R_{1}}{R_{2}}}V_{sat}$ to ${\frac {R_{1}}{R_{2}}}V_{sat}$ Inductance gyrator L = RLRC
Negative impedance converter $R_{\mathrm {in} }=-R_{3}{\frac {R_{1}}{R_{2}}}$ Logarithmic configuration $v_{\mathrm {out} }=-V_{\gamma }\ln \left({\frac {v_{\mathrm {in} }}{I_{\mathrm {S} }\cdot R}}\right)$ Exponential configuration $v_{\mathrm {out} }=-RI_{\mathrm {S} }e^{v_{\mathrm {in} } \over V_{\gamma }}$ 