# Electronics Handbook/Circuits/Operational Amplifier Configurations

## Linear Configurations

Type Configuration ${\displaystyle {\frac {V_{o}}{V_{i}}}}$
Inverting amplifier ${\displaystyle V_{\mathrm {out} }=-V_{\mathrm {in} }\left({R_{f} \over R_{1}}\right)}$
Non-inverting amplifier ${\displaystyle V_{\mathrm {out} }=V_{\mathrm {in} }\left(1+{R_{2} \over R_{1}}\right)}$
Voltage follower ${\displaystyle V_{\mathrm {out} }=V_{\mathrm {in} }\!\ }$
Summing amplifier ${\displaystyle V_{\mathrm {out} }=-R_{\mathrm {f} }\left({V_{1} \over R_{1}}+{V_{2} \over R_{2}}+\cdots +{V_{n} \over R_{n}}\right)}$
Integrating amplifier ${\displaystyle V_{\mathrm {out} }=\int _{0}^{t}-{V_{\mathrm {in} } \over RC}\,dt+V_{\mathrm {initial} }}$
Differentiating amplifier ${\displaystyle V_{\mathrm {out} }=-RC\left({dV_{\mathrm {in} } \over dt}\right)}$
Schmitt trigger Hysteresis from ${\displaystyle {\frac {-R_{1}}{R_{2}}}V_{sat}}$ to ${\displaystyle {\frac {R_{1}}{R_{2}}}V_{sat}}$
Inductance gyrator L = RLRC
Negative impedance converter ${\displaystyle R_{\mathrm {in} }=-R_{3}{\frac {R_{1}}{R_{2}}}}$
Logarithmic configuration ${\displaystyle v_{\mathrm {out} }=-V_{\gamma }\ln \left({\frac {v_{\mathrm {in} }}{I_{\mathrm {S} }\cdot R}}\right)}$
Exponential configuration ${\displaystyle v_{\mathrm {out} }=-RI_{\mathrm {S} }e^{v_{\mathrm {in} } \over V_{\gamma }}}$