# Electronics/Formulas

## Conductor's Properties

Voltage
${\displaystyle V={\frac {W}{Q}}}$
Current
${\displaystyle I={\frac {Q}{t}}}$
Energy
${\displaystyle E={\frac {W}{t}}={\frac {W}{Q}}{\frac {Q}{t}}=V\cdot I}$
Conductance
${\displaystyle Y={\frac {I}{V}}={\frac {1}{R}}}$
Resistance
${\displaystyle R={\frac {V}{I}}={\frac {1}{Y}}}$

## Resistance and Temperture

Resistance of a conductor icrease with increasing temperature

For Conductor
R = Ro + N T
For Semi Conductor
${\displaystyle R=R_{o}e^{N}T}$

## Ohm's Law

Resistance
${\displaystyle R={\frac {V}{I}}}$
Voltage
${\displaystyle V=I\cdot R}$
Current
${\displaystyle I={\frac {V}{R}}}$
Power
${\displaystyle P=I\cdot V}$

## Power Delivered

Electric Power delivered through resistive network is equal to Electric Power Supply minus Electric Power Loss as Heat through resistance of the resistive network

Electric Power Supply
${\displaystyle P_{v}=IV}$
Electric Power Loss
${\displaystyle P_{r}=I^{2}R={\frac {V^{2}}{R}}}$
Electric Power Delivered
${\displaystyle P=P_{v}-P_{r}}$
${\displaystyle P=IV-I^{2}R=I(V-IR)}$
${\displaystyle P=IV-{\frac {V^{2}}{R}}=V(I-{\frac {V}{R}}}$

## Work Done

${\displaystyle W=P\cdot t}$
${\displaystyle W=F\cdot s}$
${\displaystyle W=F\cdot s\cdot \cos \theta }$