Chess/Optional homework/4

From Wikibooks, open books for an open world
Jump to navigation Jump to search
a b c d e f g h
8{{{square}}} black king{{{square}}} black rook{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black rook{{{square}}} black king8
7{{{square}}} black pawn{{{square}}} black bishop{{{square}}} black pawn{{{square}}} black pawn{{{square}}} black knight{{{square}}} black pawn{{{square}}} black king{{{square}}} black pawn7
6{{{square}}} black king{{{square}}} black bishop{{{square}}} black knight{{{square}}} black king{{{square}}} black king{{{square}}} white pawn{{{square}}} black king{{{square}}} black king6
5{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king5
4{{{square}}} white queen{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king4
3{{{square}}} white bishop{{{square}}} black king{{{square}}} white pawn{{{square}}} white bishop{{{square}}} black king{{{square}}} black queen{{{square}}} black king{{{square}}} black king3
2{{{square}}} white pawn{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} white pawn{{{square}}} white pawn{{{square}}} white pawn2
1{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} white rook{{{square}}} white rook{{{square}}} black king{{{square}}} white king{{{square}}} black king1
a b c d e f g h

Problem 1[edit]

1. White to move and win

This position occurred in the "Evergreen game", A. Anderssen vs. J. Dufresne, 1851.
Hint: Sacrifice the rook, then the queen.


Solution: ______________________________________________

______________________________________________________

______________________________________________________________________________________

______________________________________________________________________________________

a b c d e f g h
8{{{square}}} black rook{{{square}}} black king{{{square}}} black bishop{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black knight{{{square}}} black rook8
7{{{square}}} black pawn{{{square}}} black king{{{square}}} black king{{{square}}} black pawn{{{square}}} black king{{{square}}} black pawn{{{square}}} black pawn{{{square}}} black pawn7
6{{{square}}} black knight{{{square}}} black king{{{square}}} black king{{{square}}} white bishop{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king6
5{{{square}}} black king{{{square}}} black pawn{{{square}}} black king{{{square}}} white knight{{{square}}} white pawn{{{square}}} white knight{{{square}}} black king{{{square}}} white pawn5
4{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} white pawn{{{square}}} black king4
3{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} white pawn{{{square}}} black king{{{square}}} white queen{{{square}}} black king{{{square}}} black king3
2{{{square}}} white pawn{{{square}}} black king{{{square}}} white pawn{{{square}}} black king{{{square}}} white king{{{square}}} black king{{{square}}} black king{{{square}}} black king2
1{{{square}}} black queen{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black king{{{square}}} black bishop{{{square}}} black king1
a b c d e f g h

Problem 2[edit]

2. White to move and win

This position occurred in the "Immortal game", A. Anderssen vs. L. Kieseritzky, 1851.
Hint: Prepare to sacrifice the queen.

Solution: ______________________________________________

______________________________________________________

______________________________________________________________________________________

______________________________________________________________________________________