Biomedical Engineering Theory And Practice/Classes of Biomaterials

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Classes of Biomaterials[edit]

Metals and alloys as biomaterials[edit]

Table 6. Mechanical properties of biomaterials

Material Tensile strength (MPa) Compressive strength (MPa) Elastic modulus (GPa) Fracture toughness (MPa. m-1/2)
Cortical Bone 50-151[1] 100-230[2] 7-30[3] 2-12[3]
Titanium 345[4] 250-600[5] 102.7[4] 58-66[4]
Stainless steel 465-950[6] 1000[5] 200[1] 55-95[5]
Ti-Alloys 596-1100[4] 450-1850[5] 55-114[4] 40-92[4]
Alumina 270-500[5] 3000-5000[5] 380-410[3] 5-6[3]

Ceramics as biomaterials[edit]

Table 7: Bioceramics Applications [7]

Devices Function Biomaterial
Artificial total hip, knee, shoulder, elbow, wrist Reconstruct arthritic or fractured joints High-density alumina, metal bioglass coatings
Bone plates, screws, wires Repair fractures Bioglass-metal fiber composite, Polysulfone-carbon fiber composite
Intramedullary nails Align fractures Bioglass-metal fiber composite, Polysulfone-carbon fiber composite
Harrington rods Correct chronic spinal curvature Bioglass-metal fiber composite, Polysulfone-carbon fiber composite
Permanently implanted artificial limbs Replace missing extremities Bioglass-metal fiber composite, Polysulfone-carbon fiber composite
Vertebrae Spacers and extensors Correct congenital deformity Al2O3
Spinal fusion Immobilize vertebrae to protect spinal cord Bioglass
Alveolar bone replacements, mandibular reconstruction Restore the alveolar ridge to improve denture fit Polytetra fluro ethylene (PTFE) - carbon composite, Porous Al2O3, Bioglass, dense-apatite
End osseous tooth replacement implants Replace diseased, damaged or loosened teeth Al2O3, Bioglass, dense hydroxyapatite, vitreous carbon
Orthodontic anchors Provide posts for stress application required to change deformities Bioglass-coated Al2O3, Bioglass coated vitallium

Table 2: Mechanical Properties of Ceramic Biomaterials [7]

Material Young’s Modulus (GPa) CompressiveStrength (MPa) Bond strength (GPa) Hardness Density (g/cm3)
Inert Al2O3 380 4000 300-400 2000-3000(HV) >3.9
ZrO2 (PS) 150-200 2000 200-500 1000-3000(HV) ≈6.0
Graphite 20-25 138 NA NA 1.5-1.9
(LTI)Pyrolitic Carbon 17-28 900 270-500 NA 1.7-2.2
Vitreous Carbon 24-31 172 70-207 150-200(DPH) 1.4-1.6
Bioactive HAP 73-117 600 120 350 3.1
Bioglass ≈75 1000 50 NA 2.5
AW Glass Ceramic 118 1080 215 680 2.8
Bone 3-30 130-180 60-160 NA NA

Polymers as biomaterials[edit]

Composite as biomaterials[edit]

Biodegradable Polymers as Biomaterials[edit]

Generally, biodegradable polymers is composed of ester, amide, or ether bonds. These biodegradable polymers can be categorized into two groups based on their structure and synthesis. One of these groups is agro-polymers, or those derived from biomass[8]. The other consists of biopolyesters, derived from microorganisms or synthetically made from either naturally or synthetic monomers.

Biodegradable polymers organization based on structure and occurrence [8]

Biopolyesters as Biomaterials[edit]

Agro-polymers as Biomaterials[edit]

  1. a b Chen, Q., Zhu, C., & Thouas, G. A. (2012). Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress in Biomaterials, 1(1), 1-22
  2. Kokubo, T., Kim, H. M., & Kawashita, M. (2003). Novel bioactive materials with different mechanical properties. Biomaterials, 24(13), 2161-2175.
  3. a b c d Amaral, M., Lopes, M. A., Silva, R. F., & Santos, J. D. (2002). Densification route and mechanical properties of Si 3 N 4–bioglass biocomposites. Biomaterials, 23(3), 857-862
  4. a b c d e f Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys.Materials Science and Engineering: A, 243(1), 231-236.
  5. a b c d e f NPTEL >> Metallurgy and Material Science >> Introduction to Biomaterials (Video) >> Lecture-01-Introduction to basic concepts of Biomaterials Science;
  6. Katti, K. S. (2004). Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces, 39(3), 133-142.
  7. a b Thamaraiselvi, T. V., and S. Rajeswari. “Biological evaluation of bioceramic materials-a review.” Carbon 24.31 (2004): 172.
  8. a b editors, Luc Avérous, Eric Pollet, (2012). Environmental silicate nano-biocomposites. London: Springer. ISBN 978-1-4471-4108-2.