Acoustics/Human Vocal Fold

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Physiology of vocal fold[edit | edit source]

The human vocal fold is a set of lip-like tissues located inside the larynx, and is the source of sound for humans and many animals.

The larynx is located at the top of the trachea. It is mainly composed of cartilages and muscles, and the largest cartilage, thyroid, is well known as the "Adam's Apple."

The organ has two main functions; to act as the last protector of the airway, and to act as a sound source for voice. This page focuses on the latter function.

Links on Physiology:

Voice production[edit | edit source]

Although the science behind sound production for a vocal fold is complex, it can be thought of as similar to a brass player's lips, or a whistle made out of grass. Basically, vocal folds (or lips or a pair of grass) make a constriction to the airflow, and as the air is forced through the narrow opening, the vocal folds oscillate. This causes a periodical change in the air pressure, which is perceived as sound.

Vocal Folds Video

When the airflow is introduced to the vocal folds, it forces open the two vocal folds which are nearly closed initially. Due to the stiffness of the folds, they will then try to close the opening again. And now the airflow will try to force the folds open etc... This creates an oscillation of the vocal folds, which in turn, as I stated above, creates sound. However, this is a damped oscillation, meaning it will eventually achieve an equilibrium position and stop oscillating. So how are we able to "sustain" sound?

As it will be shown later, the answer seems to be in the changing shape of vocal folds. In the opening and the closing stages of the oscillation, the vocal folds have different shapes. This affects the pressure in the opening, and creates the extra pressure needed to push the vocal folds open and sustain oscillation. This part is explained in more detail in the "Model" section.

This flow-induced oscillation, as with many fluid mechanics problems, is not an easy problem to model. Numerous attempts to model the oscillation of vocal folds have been made, ranging from a single mass-spring-damper system to finite element models. In this page I would like to use my single-mass model to explain the basic physics behind the oscillation of a vocal fold.

Information on vocal fold models: National Center for Voice and Speech

Model[edit | edit source]

Figure 1: Schematics

The most simple way of simulating the motion of vocal folds is to use a single mass-spring-damper system as shown above. The mass represents one vocal fold, and the second vocal fold is assumed to be symmetry about the axis of symmetry. Position 3 represents a location immediately past the exit (end of the mass), and position 2 represents the glottis (the region between the two vocal folds).

The pressure force[edit | edit source]

The major driving force behind the oscillation of vocal folds is the pressure in the glottis. The Bernoulli's equation from fluid mechanics states that:

-----EQN 1

Neglecting potential difference and applying EQN 1 to positions 2 and 3 of Figure 1,

-----EQN 2

Note that the pressure and the velocity at position 3 cannot change. This makes the right hand side of EQN 2 constant. Observation of EQN 2 reveals that in order to have oscillating pressure at 2, we must have oscillation velocity at 2. The flow velocity inside the glottis can be studied through the theories of the orifice flow.

The constriction of airflow at the vocal folds is much like an orifice flow with one major difference: with vocal folds, the orifice profile is continuously changing. The orifice profile for the vocal folds can open or close, as well as change the shape of the opening. In Figure 1, the profile is converging, but in another stage of oscillation it takes a diverging shape.

The orifice flow is described by Blevins as:

-----EQN 3

Where the constant C is the orifice coefficient, governed by the shape and the opening size of the orifice. This number is determined experimentally, and it changes throughout the different stages of oscillation.

Solving equations 2 and 3, the pressure force throughout the glottal region can be determined.

The Collision Force[edit | edit source]

As the video of the vocal folds shows, vocal folds can completely close during oscillation. When this happens, the Bernoulli equation fails. Instead, the collision force becomes the dominating force. For this analysis, Hertz collision model was applied.

-----EQN 4


Here delta is the penetration distance of the vocal fold past the line of symmetry.

Simulation of the model[edit | edit source]

The pressure and the collision forces were inserted into the equation of motion, and the result was simulated.

Figure 2: Area Opening and Volumetric Flow Rate

Figure 2 shows that an oscillating volumetric flow rate was achieved by passing a constant airflow through the vocal folds. When simulating the oscillation, it was found that the collision force limits the amplitude of oscillation rather than drive the oscillation. Which tells us that the pressure force is what allows the sustained oscillation to occur.

The acoustic output[edit | edit source]

This model showed that the changing profile of glottal opening causes an oscillating volumetric flow rate through the vocal folds. This will in turn cause an oscillating pressure past the vocal folds. This method of producing sound is unusual, because in most other means of sound production, air is compressed periodically by a solid such as a speaker cone.

Past the vocal folds, the produced sound enters the vocal tract. Basically this is the cavity in the mouth as well as the nasal cavity. These cavities act as acoustic filters, modifying the character of the sound. These are the characters that define the unique voice each person produces.

Related links[edit | edit source]

References[edit | edit source]

  1. Fundamentals of Acoustics; Kinsler et al, John Wiley & Sons, 2000
  2. Acoustics: An introduction to its Physical Principles and Applications; Pierce, Allan D., Acoustical Society of America, 1989.
  3. Blevins, R.D. (1984). Applied Fluid Dynamics Handbook. Van Nostrand Reinhold Co. 81-82.
  4. Titze, I. R. (1994). Principles of Voice Production. Prentice-Hall, Englewood Cliffs, NJ.
  5. Lucero, J. C., and Koenig, L. L. (2005). Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control, Journal of the Acostical Society of America 117, 1362-1372.
  6. Titze, I.R. (1988). The physics of small-amplitude oscillation of the vocal folds. Journal of the Acoustical Society of America 83, 1536–1552

Basic Room Acoustic Treatments · Threshold of Hearing/Pain