Jump to content

A-level Chemistry/OCR (Salters)/Alkynes

From Wikibooks, open books for an open world

ALKYNES Like alkenes, alkynes are also unsaturated hydrocarbons. They contain at least one triple bond between two carbon atoms. The number of hydrogen atoms is still less in alkynes as compared to alkenes or alkanes. Their general formula is CnH2n–2. The first stable member of alkyne series is ethyne which is popularly known as acetylene. Acetylene is used for arc welding purposes in the form of oxyacetylene flame obtained by mixing acetylene with oxygen gas. Alkynes are starting materials for a large number of organic compounds. Hence, it is interesting to study this class of organic compounds.

Structure of Triple Bond Ethyne is the simplest molecule of alkyne series. Structure of ethyne is shown in Fig. 13.6.

Each carbon atom of ethyne has two sp hybridised orbitals. Carbon-carbon sigma (σ) bond is obtained by the head-on overlapping of the two sp hybridised orbitals of the two carbon atoms. The remaining sp hybridised orbital of each carbon atom undergoes overlapping along the internuclear axis with the 1s orbital of each of the two hydrogen atoms forming two C-H sigma bonds. H-C-C bond angle is of 180°. Each carbon has two unhybridised p orbitals which are perpendicular to each other as well as to the plane of the C-C sigma bond. The 2p orbitals of one carbon atom are parallel to the 2p orbitals of the other carbon atom, which undergo lateral or sideways overlapping to form two pi (π) bonds between two carbon atoms. Thus ethyne molecule consists of one C–C σ bond, two C–H σ bonds and two C–C π bonds. The strength of C≡C bond (bond enthalpy 823 kJ mol-1) is more than those of C=C bond (bond enthalpy 681 kJ mol–1) and C–C bond (bond enthalpy 348 kJ mol–1). The C≡C bond length is shorter (120 pm) than those of C=C (133 pm) and C–C (154 pm). Electron cloud between two carbon atoms is cylindrically symmetrical about the internuclear axis. Thus, ethyne is a linear molecule.