This is a file from the Wikimedia Commons

File:Julia set c = -1.05204872 DLD.png

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Original file(2,000 × 2,000 pixels, file size: 767 KB, MIME type: image/png)

Summary

Description
English: Julia set c = -1.05204872 Algorithm : Discrete Lagrangian Descriptors (DLD) by Víctor J. García-Garrido[1]
Date
Source Own work with help of pauldelbrot[2] and 3Dickulus[3]
Author Adam majewski
Other versions

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.


c src code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  


  
  ==============================================
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
	export  OMP_DISPLAY_ENV="TRUE"	
  	gcc d.c -lm -Wall -march=native -fopenmp
  	time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >i.txt
  time ./a.out >e.txt
  
  
  
  
  
  
  convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png

  
  =======================
  # gnuplot "i.plt"
set terminal svg enhanced background rgb 'white'
set xlabel "re(z)"
set ylabel "DLD"
set title "Relation between z and DLD in the interior of Julia set for c = -1"
set output "interior.svg"
plot "i.txt" with lines

  ----------------------
  d0 - db  = 5.0000000000000000 - 4.5389870050569598 = 0.4610129949430402
 allways free memory (deallocate )  to avoid memory leaks 
Numerical approximation of Julia set for fc(z)= z^2 + c 
parameter c = ( -1.0000000000000000 ; 0.0000000000000000 ) 
Image Width = 4.000000 in world coordinate
PixelWidth = 0.004004 
Maximal number of iterations = iterMax = 1000 
ratio of image  = 1.000000 ; it should be 1.000 ...
gcc version: 7.5.0
  
  
*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP
#include <limits.h>		// Maximum value for an unsigned long long int



// https://sourceforge.net/p/predef/wiki/Standards/

#if defined(__STDC__)
#define PREDEF_STANDARD_C_1989
#if defined(__STDC_VERSION__)
#if (__STDC_VERSION__ >= 199409L)
#define PREDEF_STANDARD_C_1994
#endif
#if (__STDC_VERSION__ >= 199901L)
#define PREDEF_STANDARD_C_1999
#endif
#endif
#endif




/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 10000;	//  
// The size of array has to be a positive constant integer 
static unsigned long long int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
//unsigned char *edge;
//unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array


static const double ZxMin = -1.8;	//-0.05;
static const double ZxMax = 1.8;	//0.75;
static const double ZyMin = -1.8;	//-0.1;
static const double ZyMax = 1.8;	//0.7;
static double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
static double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
static double ratio;


// complex numbers of parametr plane 
//https://fractalforums.org/code-snippets-fragments/74/lagrangian-descriptors-fragment-code/3612/msg22426#msg22426
double complex c = -1.05204872;	// parameter of function fc(z)=z^2 + c


// attracting period 2 cycle 
double complex z21 = 0.049822582293598;
double complex z22 = -1.049822582293598;
double complex z1a = -0.641073494565534;	// alfa
complex double z1b = 1.641073494565534;	// beta
double complex zb = 0.203208556149733 + 0.377005347593583 * I;	// point on the boubndary of main componnet

/*
ER = pow(10,ERe);
   AR = pow(10,-ARe);
 */
int ARe = 3;			// increase ARe until black ( unknown) points disapear 
int ERe = 3;
double ER;			//= 1e60;
double AR;			//= 1e-16; // bigger values do not works




int IterMax = 1000;

// DLD
const int N = 20;		// fixed number : maximal number of iterations
double p = 0.01444322;		//


// DLD colors
double me = 1.0;
double mi = 0.9;
double d21;			// = lagrangian(z21, c, N, p);
double d22;			//  = lagrangian(z22, c, N, p);
double db;			// = lagrangian(z1a, c, N, p);        
double dd;			// = d1a-d21;



/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 150;
unsigned char iColorOfInterior = 50;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 255;

// pixel counters
unsigned long long int uUnknown = 0;
unsigned long long int uInterior = 0;
unsigned long long int uExterior = 0;




/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double
GiveZx (int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double
GiveZy (int iy)
{
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double
GiveZ (int ix, int iy)
{
  double Zx = GiveZx (ix);
  double Zy = GiveZy (iy);

  return Zx + Zy * I;




}




// ****************** DYNAMICS = trap tests ( target sets) ****************************


/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int
Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}


// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int
ComputeBoundaries (unsigned char S[], unsigned char D[])
{

  unsigned int iX, iY;		/* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i;		/* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv;
  // boundaries are in D  array ( global var )

  // clear D array
  memset (D, iColorOfExterior, iSize * sizeof (*D));	// for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);

  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for (iY = 1; iY < iyMax - 1; ++iY)
    {
      for (iX = 1; iX < ixMax - 1; ++iX)
	{
	  Gv =
	    S[Give_i (iX - 1, iY + 1)] + 2 * S[Give_i (iX, iY + 1)] +
	    S[Give_i (iX - 1, iY + 1)] - S[Give_i (iX - 1, iY - 1)] -
	    2 * S[Give_i (iX - 1, iY)] - S[Give_i (iX + 1, iY - 1)];
	  Gh =
	    S[Give_i (iX + 1, iY + 1)] + 2 * S[Give_i (iX + 1, iY)] +
	    S[Give_i (iX - 1, iY - 1)] - S[Give_i (iX + 1, iY - 1)] -
	    2 * S[Give_i (iX - 1, iY)] - S[Give_i (iX - 1, iY - 1)];
	  G = sqrt (Gh * Gh + Gv * Gv);
	  i = Give_i (iX, iY);	/* compute index of 1D array from indices of 2D array */
	  if (G == 0)
	    {
	      D[i] = 255;
	    }			/* background */
	  else
	    {
	      D[i] = 0;
	    }			/* boundary */
	}
    }



  return 0;
}



// copy from Source to Destination
int
CopyBoundaries (unsigned char S[], unsigned char D[])
{

  unsigned int iX, iY;		/* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i;		/* index of 1D array  */


  //printf("copy boundaries from S array to D array \n");
  for (iY = 1; iY < iyMax - 1; ++iY)
    for (iX = 1; iX < ixMax - 1; ++iX)
      {
	i = Give_i (iX, iY);
	if (S[i] == 0)
	  D[i] = 0;
      }



  return 0;
}







// ***************************************************************************************************************************
// ************************** DLD/J*****************************************
// ****************************************************************************************************************************



/* partial pnorm 
   input: z , zn = f(z), p
   output ppn
   
   
*/
double
ppnorm (complex double z, complex double zn, double p)
{

  double s[2][3];		// array for 2 points on the Riemann sphere
  int j;
  double d;			// denominator 
  double x;
  double y;

  double ds;
  double ppn = 0.0;

  // map from complex plane to riemann sphere
  // z
  x = creal (z);
  y = cimag (z);
  d = x * x + y * y + 1.0;

  s[0][0] = (2.0 * x) / d;
  s[0][1] = (2.0 * y) / d;
  s[0][2] = (d - 2.0) / d;	// (x^2 + y^2 - 1)/d

  // zn
  x = creal (zn);
  y = cimag (zn);
  d = x * x + y * y + 1.0;
  s[1][0] = (2.0 * x) / d;
  s[1][1] = (2.0 * y) / d;
  s[1][2] = (d - 2.0) / d;	// (x^2 + y^2 - 1)/d

  // sum 
  for (j = 0; j < 3; ++j)
    {
      ds = fabs (s[1][j] - s[0][j]);
      //  normal:  neither zero, subnormal, infinite, nor NaN
      //if (fpclassify (ds) !=FP_INFINITE)
      //if (isnormal(ds)) 
      // it is solved by if (cabs(z) > 1e60 ) break; procedure in parent function 
      ppn += pow (ds, p);	// |ds|^p
      //      else {ppn = 10000.0; printf("ds = infty\t");} // 

    }


  return ppn;







}

// DLD = Discret Lagrangian Descriptior
double
lagrangian (complex double z0, complex double c, int iMax, double p)
{

  int i;			// number of iteration
  double d = 0.0;		// DLD = sum
  double ppn;			// partial pnorm
  complex double z = z0;
  complex double zn;		// next z

  for (i = 0; i < iMax; ++i)
    {




      zn = z * z + c;		// complex iteration
      ppn = ppnorm (z, zn, p);
      d += ppn;			// sum
      //
      z = zn;

      //if (! isnormal(d)) { return 0.0; } // not works
      if (cabs (z) > 1e6)
	break;			// exterior : big values produces artifacts on the image  



    }





  //if (d<0.0) {// interior
  // d(z1a) - d(z21) = -0.0804163521959989        
  //      d = - d;
  //      d = (db - d) /dd ; // normalize, see test_interior
  //d = d*d;
  //if (d>1.0) {printf("d int > 1.0\n");
  ///     }
  //      else {

  d = d / ((double) i);		// averaging not summation
  //d = d*me;} // exterior

  return d;




}





unsigned char
ComputeColor_DLD (complex double z, int FatouType)
{


  //double cabsz;
  int iColor;
  double d;

  if (FatouType == 1)
    {				// interior
      d = lagrangian (z, c, N, p);
      // modify gradient position

      //{d = d - (int)d;} // only fractional part
      d = d * d * mi;
      //if ( d< 1.0 ) d = 0.0;

    }				//  
  else
    {
      d = lagrangian (z, c, 10 * N, p);
    }

  iColor = (int) (d * 255) % 255;	// nMax or lower walues in denominator



  return (unsigned char) iColor;


}



// plots raster point (ix,iy) 
int
DrawDLDPoint (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;
  int FatouType;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ (ix, iy);
  iColor = A[i];		// read color = read the information about Fatou component type ( interior/exterior)
  if (iColor == iColorOfInterior)
    {
      FatouType = 1;
    }				// tru = interior
  else
    {
      FatouType = 0;
    }

  iColor = ComputeColor_DLD (z, FatouType);	// compute new color 
  A[i] = iColor;		// save new colr to the array         

  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int
DrawDLDImage (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  printf ("compute DLD image \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  for (iy = iyMin; iy <= iyMax; ++iy)
    {
      printf (" %d from %d \r", iy, iyMax);	//info 
      for (ix = ixMin; ix <= ixMax; ++ix)
	DrawDLDPoint (A, ix, iy);	//  
    }

  return 0;
}



//=========================================




unsigned char
ComputeColor_Fatou (complex double z, int IterMax)
{

  int i;			// number of iteration
  for (i = 0; i < IterMax; ++i)
    {




      z = z * z + c;		// complex iteration

      //if (! isnormal(d)) { return 0.0; } // not works
      if (cabs (z) > 2.0)
	{
	  uExterior += 1;
	  return iColorOfExterior;
	}			// exterior : big values produces NAN error in ppnorm computing 


      if (cabs (z - z21) < AR || cabs (z - z22) < AR)
	{			// interior
	  uInterior += 1;
	  return iColorOfInterior;


	}


    }

  uUnknown += 1;
  return iColorOfUnknown;


}





// plots raster point (ix,iy) 
int
DrawFatouPoint (unsigned char A[], int ix, int iy, int IterMax)
{
  int i;			/* index of 1D array */
  unsigned char iColor = 0;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ (ix, iy);
  iColor = ComputeColor_Fatou (z, IterMax);
  A[i] = iColor;		// interior

  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int
DrawFatouImage (unsigned char A[], int IterMax)
{
  unsigned int ix, iy;		// pixel coordinate 

  printf ("compute Fatou image \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
  for (iy = iyMin; iy <= iyMax; ++iy)
    {
      printf (" %d from %d \r", iy, iyMax);	//info 
      for (ix = ixMin; ix <= ixMax; ++ix)
	DrawFatouPoint (A, ix, iy, IterMax);	//  
    }

  return 0;
}


//=========







// uses global var :  ...
// scanning complex plane 
int
CheckFatouImage (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 
  unsigned long long int u_Unknown = 0;
  unsigned long long int u_Interior = 0;
  unsigned long long int u_Exterior = 0;

  printf ("check Fatou array \n");
  // for all pixels of image 
  //#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  for (iy = iyMin; iy <= iyMax; ++iy)
    {
      //printf (" %d from %d \r", iy, iyMax); //info 
      for (ix = ixMin; ix <= ixMax; ++ix)

	{
	  unsigned char color = A[Give_i (ix, iy)];
	  if (color == iColorOfInterior)
	    {
	      u_Interior += 1;
	    }
	  else
	    {
	      if (color == iColorOfExterior)
		{
		  u_Exterior += 1;
		}
	      {
		if (color == iColorOfUnknown)
		  {
		    u_Unknown += 1;
		  }
	      }
	    }
	  //printf("error\n");

	}



    }



  printf ("pixel counters\n");
  printf ("uUnknown = %llu\n", u_Unknown);
  printf ("uExterior = %llu\n", u_Exterior);
  printf ("uInterior = %llu\n", u_Interior);
  printf ("Sum of pixels  = %llu\n", u_Interior + u_Exterior + u_Unknown);
  printf ("all pixels of the array = iSize = %llu\n", iSize);
  printf ("Maximum value for an unsigned long long int = ULLONG_MAX = %llu\n",
	  ULLONG_MAX);

  return 0;
}



//-------------------------------------------------------

// test how values changes to tune color 
// from z21 to zb
int
test_interior ()
{

  complex double z = z21;
  complex double dz = cabs (z21 - zb) / 15.0;
  double r = cabs (zb);


  printf ("# re(z) \t d\n");	// gnuplot
  while (creal (z) < r)
    {				// from z21 to z1a

      double d = lagrangian (z, c, N, p);
      //int iColor = ComputeColorOfDLD(z);

      // printf(" z = %.16f d = %.16f color = %d \n",creal(z), d, iColor);
      printf (" %.16f %.16f \n", creal (z), d);	// gnuplot 
      z += dz;
    }

  //              
  d21 = lagrangian (z21, c, N, p);
  db = lagrangian (zb, c, N, p);
  d22 = lagrangian (z22, c, N, p);
  dd = db - d21;
  printf ("d(z21) = %.16f \n", d21);
  printf ("d(z22) = %.16f \n", d22);
  printf ("d(zb) = %.16f \n", db);
  printf ("d(zb) - d(z21) = %.16f\n", dd);;



  return 0;


}




// test how values changes to tune color 
int
test_exterior ()
{

  complex double z;
  complex double z0 = 1.62;
  complex double z1 = 3.0;
  complex double dz = 0.001;


  z = z0;
  printf ("# z d\n");		// gnuplot
  while (creal (z) < creal (z1))
    {

      double d = lagrangian (z, c, N, p);
      //int iColor = ComputeColorOfDLD(z);

      // printf(" z = %.16f d = %.16f color = %d \n",creal(z), d, iColor);
      printf (" %.16f %.16f \n", creal (z), d);	// gnuplot 
      z += dz;
    }

  //              
  double d0 = lagrangian (z0, c, N, p);
  double d1 = lagrangian (z1, c, N, p);
  double dd = d0 - d1;
  printf ("d0 - d1  = %.16f - %.16f = %.16f\n", d0, d1, dd);

  return 0;


}










// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int
SaveArray2PGMFile (unsigned char A[], int a, int b, int c, double d,
		   char *comment)
{

  FILE *fp;
  const unsigned int MaxColorComponentValue = 255;	/* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name[100];		/* name of file */
  snprintf (name, sizeof name, "dd300%d_%d_%d_%.2f", a, b, c, d);	/*  */
  char *filename = strcat (name, ".pgm");
  char long_comment[200];
  sprintf (long_comment, "%s\tER = %e\tAR =%e", comment, ER, AR);





  // save image array to the pgm file 
  fp = fopen (filename, "wb");	// create new file,give it a name and open it in binary mode 
  fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue);	// write header to the file
  fwrite (A, iSize, 1, fp);	// write array with image data bytes to the file in one step 
  fclose (fp);

  // info 
  printf ("File %s saved ", filename);
  if (long_comment == NULL || strlen (long_comment) == 0)
    printf ("\n");
  else
    printf (". Comment = %s \n", long_comment);

  return 0;
}




int
PrintCInfo ()
{

  printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);	// https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is displayed in the console : export  OMP_DISPLAY_ENV="TRUE"

  printf ("__STDC__ = %d\n", __STDC__);
  printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
  printf ("c dialect = ");
  switch (__STDC_VERSION__)
    {				// the format YYYYMM 
    case 199409L:
      printf ("C94\n");
      break;
    case 199901L:
      printf ("C99\n");
      break;
    case 201112L:
      printf ("C11\n");
      break;
    case 201710L:
      printf ("C18\n");
      break;
      //default : /* Optional */

    }

  return 0;
}


int
PrintProgramInfo ()
{


  // display info messages
  printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  printf ("parameter c = ( %.16f ; %.16f ) \n", creal (c), cimag (c));

  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %.16f \n", PixelWidth);
  printf ("AR = %.16f = %f *PixelWidth\n", AR, AR / PixelWidth);


  //printf("pixel counters\n");
  //printf ("uUnknown = %llu\n", uUnknown);
  //printf ("uExterior = %llu\n", uExterior);
  //printf ("uInterior = %llu\n", uInterior);
  //printf ("Sum of pixels  = %llu\n", uInterior+uExterior + uUnknown);
  //printf ("all pixels of the array = iSize = %llu\n", iSize);


  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("DLD : N = Maximal number of iterations = iterMax = %d \n", N);
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  //




  return 0;
}






// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int
setup ()
{

  printf ("setup start\n");






  /* 2D array ranges */

  iWidth = iHeight;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...

  ER = pow (10, ERe);
  AR = pow (10, -ARe);



  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc (iSize * sizeof (unsigned char));


  if (data == NULL)
    {
      fprintf (stderr, " Could not allocate memory");
      return 1;
    }





  test_interior ();


  printf (" end of setup \n");

  return 0;

}				// ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int
end ()
{


  printf (" allways free memory (deallocate )  to avoid memory leaks \n");	// https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
  free (data);


  PrintProgramInfo ();
  PrintCInfo ();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int
main ()
{
  setup ();


  DrawFatouImage (data, IterMax);	// first find Fatou
  SaveArray2PGMFile (data, iWidth, IterMax, ERe, ARe,
		     "DLD/J , name = iWidth_IterMax_ER_AR");

  CheckFatouImage (data);	// 

  DrawDLDImage (data);
  SaveArray2PGMFile (data, iWidth, N, ERe, mi,
		     "DLD/J , name = iWidth_N_ER_mi");


  //test_exterior();

  end ();

  return 0;
}

text output

export  OMP_DISPLAY_ENV="TRUE"
./a.out

OPENMP DISPLAY ENVIRONMENT BEGIN
  _OPENMP = '201511'
  OMP_DYNAMIC = 'FALSE'
  OMP_NESTED = 'FALSE'
  OMP_NUM_THREADS = '8'
  OMP_SCHEDULE = 'DYNAMIC'
  OMP_PROC_BIND = 'FALSE'
  OMP_PLACES = ''
  OMP_STACKSIZE = '0'
  OMP_WAIT_POLICY = 'PASSIVE'
  OMP_THREAD_LIMIT = '4294967295'
  OMP_MAX_ACTIVE_LEVELS = '2147483647'
  OMP_CANCELLATION = 'FALSE'
  OMP_DEFAULT_DEVICE = '0'
  OMP_MAX_TASK_PRIORITY = '0'
  OMP_DISPLAY_AFFINITY = 'FALSE'
  OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A'
OPENMP DISPLAY ENVIRONMENT END
setup start
# re(z) 	 d
 0.0498225822935980 2.0019628511802994 
 0.0769568401885710 2.0019744168232489 
 0.1040910980835440 2.0019722362929828 
 0.1312253559785169 2.0019543636327191 
 0.1583596138734899 2.0019183527983122 
 0.1854938717684629 2.0018612484604565 
 0.2126281296634359 2.0017794882506879 
 0.2397623875584088 2.0016686844808618 
 0.2668966454533818 2.0015232724315384 
 0.2940309033483548 2.0013360372536271 
 0.3211651612433278 2.0010975374673237 
 0.3482994191383008 2.0007953805776486 
 0.3754336770332737 2.0004131176105138 
 0.4025679349282467 1.9999282106133507 
d(z21) = 2.0019628511802994 
d(z22) = 2.0019637382718325 
d(zb) = 2.9789229160482393 
d(zb) - d(z21) = 0.9769600648679400
 end of setup 
compute Fatou image 
File dd30010000_1000_3_3.00.pgm saved . Comment = DLD/J , name = iWidth_IterMax_ER_AR	ER = 1.000000e+03	AR =1.000000e-03 
check Fatou array 
pixel counters
uUnknown = 0
uExterior = 90110344
uInterior = 9889656
Sum of pixels  = 100000000
all pixels of the array = iSize = 100000000
Maximum value for an unsigned long long int = ULLONG_MAX = 18446744073709551615
compute DLD image 
File dd30010000_20_3_0.90.pgm saved . Comment = DLD/J , name = iWidth_N_ER_mi	ER = 1.000000e+03	AR =1.000000e-03 
 allways free memory (deallocate )  to avoid memory leaks 
Numerical approximation of Julia set for fc(z)= z^2 + c 
parameter c = ( -1.0520487199999999 ; 0.0000000000000000 ) 
Image Width = 3.600000 in world coordinate
PixelWidth = 0.0003600360036004 
AR = 0.0010000000000000 = 2.777500 *PixelWidth
DLD : N = Maximal number of iterations = iterMax = 20 
ratio of image  = 1.000000 ; it should be 1.000 ...
gcc version: 9.3.0
__STDC__ = 1
__STDC_VERSION__ = 201710
c dialect = C18

postprocessing

Convert using ImageMagic

 convert dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png

references

  1. Unveiling the Fractal Structure of Julia Sets with Lagrangian Descriptors by Víctor J. García-Garrido
  2. fractalforums.org: unveiling-the-fractal-structure-of-julia-sets-with-lagrangian-descriptors
  3. fractalforums.org: lagrangian-descriptors-fragment-code

Captions

Julia set c = -1.00 DLD

Items portrayed in this file

depicts

24 June 2020

image/png

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:52, 24 June 2020Thumbnail for version as of 19:52, 24 June 20202,000 × 2,000 (767 KB)Soul windsurferUploaded own work with UploadWizard

Metadata