This is a file from the Wikimedia Commons

File:Cauliflower Julia set DLD.png

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Original file(2,000 × 2,000 pixels, file size: 990 KB, MIME type: image/png)

Summary

Description
English: Cauliflower Julia set DLD. Algorithm : Discrete Lagrangian Descriptors (DLD) by Víctor J. García-Garrido[1]
Date
Source Own work with help of pauldelbrot[2]
Author Adam majewski
Other versions

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

c src code

Note that this code producec 2 files , each has : 20000x20000 pixels = 400 MB !!! If one wants smaller files change line 87 :

  static unsigned int iHeight = 20000;	//  

to smaller values like:

  static unsigned int iHeight = 1000;	//  
/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  


  
  ==============================================
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
	export  OMP_DISPLAY_ENV="TRUE"	
  	gcc d.c -lm -Wall -march=native -fopenmp
  	time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >i.txt
  time ./a.out >e.txt
  
  =======================
  # gnuplot "i.plt"
set terminal svg enhanced background rgb 'white'
set xlabel "re(z)"
set ylabel "DLD"
set title "Relation between z and DLD in the interior of Julia set for c = -1"
set output "interior.svg"
plot "i.txt" with lines

  ----------------------
  
*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP

/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 20000;	//  
// The size of array has to be a positive constant integer 
static unsigned int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;
unsigned char *bin;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array


static const double ZxMin = -1.2;	//-0.05;
static const double ZxMax =  1.2;	//0.75;
static const double ZyMin = -1.2;	//-0.1;
static const double ZyMax =  1.2;	//0.7;
static double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
static double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
static double ratio;


// complex numbers of parametr plane 
double complex c = 0.25;		// parameter of function fc(z)=z^2 + c
double complex zf = 0.5;

double ER = 1e60;
double AR = 1e-20; //1e-0;



const int N = 1000; // fixed number : maximal number of iterations
double p  = 0.015625;  // 1/64 // 0.25; 
double m = 8.0;


int iInterior = 0;
int iExterior = 0;


/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior = 200;
unsigned char iColorOfBoundary = 0;





/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double GiveZy (int iy) {
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double GiveZ( int ix, int iy){
  double Zx = GiveZx(ix);
  double Zy = GiveZy(iy);
	
  return Zx + Zy*I;
	
	


}




// ****************** DYNAMICS = trap tests ( target sets) ****************************


/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}


// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}







// ***************************************************************************************************************************
// ************************** DLD/J*****************************************
// ****************************************************************************************************************************



/* partial pnorm 
   input: z , zn = f(z), p
   output ppn
   
   
*/
double ppnorm( complex double z, complex double zn, double p){

	double s[2][3]; // array for 2 points on the Riemann sphere
	int j; 
	double d; // denominator 
	double x; 
	double y;
	
	double ds;
	double ppn = 0.0;
	
	// map from complex plane to riemann sphere
	// z
	x = creal(z);
	y = cimag(z);
	d = x*x + y*y + 1.0;
	
	s[0][0] = (2.0*x)/d;
	s[0][1] = (2.0*y)/d;  
	s[0][2] = (d-2.0)/d; // (x^2 + y^2 - 1)/d
	
	// zn
	x = creal(zn);
	y = cimag(zn);
	d = x*x + y*y + 1.0;
	s[1][0] = (2.0*x)/d;
	s[1][1] = (2.0*y)/d;  
	s[1][2] = (d-2.0)/d; // (x^2 + y^2 - 1)/d
	
	// sum 
	for (j=0; j <3; ++j){
		ds = fabs(s[1][j] - s[0][j]);
		//  normal:  neither zero, subnormal, infinite, nor NaN
		//if (fpclassify (ds) !=FP_INFINITE)
		//if (isnormal(ds)) 
		// it is solved by if (cabs(z) > 1e60 ) break; procedure in parent function 
		ppn += pow(ds,p); // |ds|^p
		//	else {ppn = 10000.0; printf("ds = infty\t");} // 
			
		}
		
		
	return ppn;
	
	
	
	
	


}

// DLD = Discret Lagrangian Descriptior
double lagrangian( complex double z0, complex double c, int iMax, double p ){

	int i; // number of iteration
	double d = 0.0; // DLD = sum
	double ppn; // partial pnorm
	complex double z = z0;
	complex double zn; // next z
	
	
	//if (cabs(z) < AR || cabs(z +1)< AR) return 5.0; // for z= 0.0 d = inf
	
	
	for (i=0; i<iMax; ++i){
	
		
		
		
		zn = z*z +c; // complex iteration
		ppn = ppnorm(z, zn, p);
		d += ppn; // sum
		//
		z = zn; 
		
		//if (! isnormal(d)) { return 0.0; } // not works
		if (cabs(z) > ER ) {
			iExterior +=1;
			d = -d;
			break; // exterior : big values produces NAN error in ppnorm computing 
			}
		// it not works ????
		if (cabs(z -zf) < AR ) 
			{ // interior
			  iInterior +=1;
				d = -d;
				break; 
				
			}
			
		
	}
	 
	
	d =  d/((double)i); // averaging 
	
	if (d<0.0) {// exterior
		d = -d;
		
		
		
		}
		else {d = m* d;}
		
	d = d - (int)d; // fractional part}
	
	return d; 
	



}





unsigned char ComputeColorOfDLD(complex double z){

 	
  	//double cabsz;
  	int iColor;
  	double d;
  
	
  	d = lagrangian(z,c, N,p);
  	
  	
   	iColor = (int)(d*255.0)  % 255; // nMax or lower walues in denominator
  
  
  return (unsigned char) iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfDLD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfDLD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfDLD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfDLD(A, ix, iy);	//  
  }

  return 0;
}





// test how values changes to tune color 
int test_interior(){

// choose 2 points such that color is changing the most
	complex double z = zf;
	complex double z2 = 0.5*I;
	int iMax = 20;
	complex double dz = (zf- z2)/iMax;
	printf("dz = %.16f ; %.16f\n", creal(dz), cimag(dz));
	int i;
	
	printf("z = %.16f ; %.16f\n", creal(z), cimag(z));
	printf("# z d\n"); // gnuplot
	for (i=0; i<iMax; ++i){
	
		double d = lagrangian(z, c, N, p);
		//int iColor = ComputeColorOfDLD(z);
		 
		// printf(" z = %.16f d = %.16f color = %d \n",creal(z), d, iColor);
		printf("%d %.16f %.16f %.16f\t %d\n",i ,  creal(z), cimag(z),d, (int)(d*255.0)  % 255); // gnuplot 
		z = z -  dz;
		}
		
	//		
	double d0 = lagrangian(zf, c, N, p);
	double db = lagrangian(z2, c, N, p);	
	double dd = d0 - db;
	printf("d0 - db  = %.16f - %.16f = %.16f\n",d0, db, dd);
	
		
	return 0;


}
 
 
 

// test how values changes to tune color 
int test_exterior(){

	complex double z;
	complex double z0 = zf;
	complex double z1 = 3.0;
	complex double dz = cabs(z1 - z0)/20;
	
	
	z = z0;
	printf("# z d color\n"); // gnuplot
	while (creal(z) < creal(z1)){
	
		double d = lagrangian(z, c, N, p);
		//int iColor = ComputeColorOfDLD(z);
		 
		// printf(" z = %.16f d = %.16f color = %d \n",creal(z), d, iColor);
		printf(" %.16f\t %.16f \t%d\n",creal(z), d, (int)(d*255.0)  % 255); // gnuplot 
		z += dz;
		}
		
	//		
	double d0 = lagrangian(z0, c, N, p);
	double d1 = lagrangian(z1, c, N, p);	
	double dd = d0 - d1;
	printf("d0 - d1  = %.16f - %.16f = %.16f\n",d0, d1, dd);
		
	return 0;


}
 
 








// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
  
  FILE * fp;
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name [100]; /* name of file */
  snprintf(name, sizeof name, "%.3f", k); /*  */
  char *filename =strncat(name,".pgm", 4);
  
  
  
  // save image to the pgm file 
  fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode 
  fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue);  // write header to the file
  fwrite(A,iSize,1,fp);  // write array with image data bytes to the file in one step 
  fclose(fp); 
  
  // info 
  printf("File %s saved ", filename);
  if (comment == NULL || strlen(comment) ==0)  
    printf("\n");
  else printf (". Comment = %s \n", comment); 

  return 0;
}







int PrintInfoAboutProgam()
{

  
  // display info messages
  printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
  
  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %f \n", PixelWidth);
  printf("iInterior = %d \n", iInterior);
  printf("iExterior = %d \n", iExterior);
 
  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("Maximal number of iterations = iterMax = %d \n", N);
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  //
  printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is diplayed in the console 
  return 0;
}






// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int setup ()
{

  printf ("setup start\n");
   
  
  
  
  
	
  /* 2D array ranges */
  
  iWidth = iHeight;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...
	
   
	
  
   	
  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc (iSize * sizeof (unsigned char));
  edge = malloc (iSize * sizeof (unsigned char));
  bin = malloc (iSize * sizeof (unsigned char));    
  	
  if (data == NULL  || edge == NULL || bin == NULL){
    fprintf (stderr, " Could not allocate memory");
    return 1;
  }

  
 	
  
  
  
  
  printf (" end of setup \n");
	
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int end(){


  printf (" allways free memory (deallocate )  to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
  free (data);
  free(edge);
  free(bin);
  
  
  PrintInfoAboutProgam();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int main () {
  setup ();
  
  
  
  DrawImagerOfDLD(data);
  SaveArray2PGMFile (data, iWidth+m+p, "DLD/J");

	ComputeBoundaries(data, edge);
	SaveArray2PGMFile (edge, iWidth+100+m+p, "boundaries of DLD/J");

  test_exterior();
  test_interior(); 
  
  end();

  return 0;
}

txt output

gcc d.c -lm -Wall -march=native -fopenmp
./a.out
setup start
 end of setup 
File 20008.016.pgm saved . Comment = DLD/J 
File 20108.016.pgm saved . Comment = boundaries of DLD/J 
# z d color
 0.5000000000000000	 -nan 	-128
 0.6250000000000000	 0.6956723222621100 	177
 0.7500000000000000	 0.6548270978041459 	166
 0.8750000000000000	 0.6442809897988127 	164
 1.0000000000000000	 0.6265944697132493 	159
 1.1250000000000000	 0.5471862349697154 	139
 1.2500000000000000	 0.5898922393465287 	150
 1.3750000000000000	 0.5431682790690553 	138
 1.5000000000000000	 0.5027246360756843 	128
 1.6250000000000000	 0.4675603911239450 	119
 1.7500000000000000	 0.5503411844773443 	140
 1.8750000000000000	 0.5269507911846940 	134
 2.0000000000000000	 0.5057177276273157 	128
 2.1250000000000000	 0.4863605298130780 	124
 2.2500000000000000	 0.4686360587290348 	119
 2.3750000000000000	 0.4523370349494329 	115
 2.5000000000000000	 0.4372871860310705 	111
 2.6250000000000000	 0.4233383125753438 	107
 2.7500000000000000	 0.4103701503419785 	104
 2.8750000000000000	 0.3982571942958144 	101
d0 - d1  = -nan - 0.5998479213011405 = -nan
dz = 0.0250000000000000 ; -0.0250000000000000
z = 0.5000000000000000 ; 0.0000000000000000
# z d
0 0.5000000000000000 0.0000000000000000 -nan	 -128
1 0.4750000000000000 0.0250000000000000 0.7121325813233135	 181
2 0.4500000000000000 0.0500000000000000 0.6771641863530853	 172
3 0.4249999999999999 0.0750000000000000 0.6461577065251660	 164
4 0.3999999999999999 0.1000000000000000 0.6197877204696240	 158
5 0.3749999999999999 0.1250000000000000 0.5965414459168343	 152
6 0.3499999999999999 0.1500000000000000 0.5753191789442660	 146
7 0.3249999999999998 0.1750000000000000 0.5553461177196439	 141
8 0.2999999999999998 0.2000000000000000 0.5360320675183665	 136
9 0.2749999999999998 0.2250000000000000 0.5168792739832853	 131
10 0.2499999999999998 0.2500000000000000 0.4974192989426989	 126
11 0.2249999999999998 0.2750000000000000 0.4771609068859917	 121
12 0.1999999999999998 0.3000000000000000 0.4555349628489580	 116
13 0.1749999999999998 0.3250000000000000 0.4318210274734753	 110
14 0.1499999999999998 0.3500000000000000 0.4050307792444734	 103
15 0.1249999999999998 0.3750000000000001 0.3736957950628046	 95
16 0.0999999999999998 0.4000000000000001 0.3354274035426386	 85
17 0.0749999999999998 0.4250000000000001 0.2858481394390004	 72
18 0.0499999999999998 0.4500000000000001 0.2153260815300087	 54
19 0.0249999999999998 0.4750000000000001 0.0937798292447631	 23
d0 - db  = -nan - 0.3205178129943942 = -nan
 allways free memory (deallocate )  to avoid memory leaks 
Numerical approximation of Julia set for fc(z)= z^2 + c 
parameter c = ( 0.2500000000000000 ; 0.0000000000000000 ) 
Image Width = 2.400000 in world coordinate
PixelWidth = 0.000120 
iInterior = 4 
iExterior = 195263944 
Maximal number of iterations = iterMax = 1000 
ratio of image  = 1.000000 ; it should be 1.000 ...
gcc version: 7.5.0

postprocessing

 convert 20008.016.pgm -resize 2000x2000 2.png

references

  1. Unveiling the Fractal Structure of Julia Sets with Lagrangian Descriptors by Víctor J. García-Garrido
  2. fractalforums.org: unveiling-the-fractal-structure-of-julia-sets-with-lagrangian-descriptors

Captions

Cauliflower Julia set DLD

Items portrayed in this file

depicts

1 May 2020

image/png

777bc45e32eaf5f1a0ac1027f4848071fbf668ab

1,013,588 byte

2,000 pixel

2,000 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:19, 1 May 2020Thumbnail for version as of 18:19, 1 May 20202,000 × 2,000 (990 KB)Soul windsurferUploaded own work with UploadWizard

Metadata