Chemical Sciences: A Manual for CSIR-UGC National Eligibility Test for Lectureship and JRF/Anisotropy

From Wikibooks, open books for an open world
Jump to navigation Jump to search


WMAP image of the (extremely tiny) anisotropies in the cosmic background radiation

Anisotropy (ænaɪˈsɒtrəpi) is the property of being directionally dependent, as opposed to isotropy, which implies homogeneity in all directions. It can be defined as a difference, when measured along different axes, in a material's physical property (absorbance, refractive index, density, etc.) An example of anisotropy is the light coming through a polarizer.

Fields of interest[edit | edit source]

Computer graphics[edit | edit source]

In the field of computer graphics, an anisotropic surface will change in appearance as it is rotated about its geometric normal, as is the case with velvet.

Anisotropic filtering (AF) is a method of enhancing the image quality of textures on surfaces that are far away and steeply angled with respect to the point of view. Older techniques, such as bilinear and trilinear filtering don't take account of the angle a surface is viewed from, which can result in aliasing or blurring of textures. By reducing detail in one direction more than another, these effects can be reduced.

Chemistry[edit | edit source]

A chemical anisotropic filter, as used to filter particles, is a filter with increasingly smaller interstitial spaces in the direction of filtration so that the proximal regions filter out larger particles and distal regions increasingly remove smaller pales, resulting in greater flow-through and more efficient filtration.

In NMR spectroscopy, the orientation of nuclei with respect to the applied magnetic field determines their chemical shift. In this context, anisotropic systems refer to the electron distribution of molecules with abnormally high electron density, like the pi system of benzene. This abnormal electron density affects the applied magnetic field and causes the observed chemical shift to change.

Wood[edit | edit source]

Wood is a naturally anisotropic material. Its properties vary widely when measured with the growth grain or against it. For example, wood's strength and hardness will be different for the same sample if measured in differing orientation.

Real World Imagery[edit | edit source]

Images of a gravity-bound or man-made environment are particularly anisotropic in the orientation domain, with more image structure located at orientations parallel with or orthogonal to the direction of gravity (vertical and horizontal).

Physics[edit | edit source]

A plasma lamp displaying the nature of plasmas, in this case, the phenomenon of "filamentation"

Cosmologists use the term to describe the uneven temperature distribution of the cosmic microwave background radiation. There is evidence for a so-called "Axis of Evil"[1] in the early Universe that is at odds with the currently favored theory of rapid expansion after the Big Bang. Cosmic anisotropy has also been seen in the alignment of galaxies' rotation axes and polarisation angles of quasars.

Physicists use the term anisotropy to describe direction-dependent properties of materials. Magnetic anisotropy, for example, may occur in a plasma, so that its magnetic field is oriented in a preferred direction. Plasmas may also show "filamentation" (such as that seen in lightning or a plasma globe) that is directional.

An anisotropic liquid is one which has the fluidity of a normal liquid, but has an average structural order relative to each other along the molecular axis, unlike water or chloroform, which contain no structural ordering of the molecules. Liquid crystals are examples of anisotropic liquids.

Some materials conduct heat in a way that is isotropic, that is independent of spatial orientation around the heat source. It is more common for heat conduction to be anisotropic, which implies that detailed geometric modeling of typically diverse materials being thermally managed is required. The materials used to transfer and reject heat from the heat source in electronics are often anisotropic.[citation needed]

Many crystals are anisotropic to light ("optical anisotropy"), and exhibit properties such as birefringence. Crystal optics describes light propagation in these media. An "axis of anisotropy" is defined as the axis along which isotropy is broken (or an axis of symmetry, such as normal to crystalline layers). Some materials can have multiple such optical axes.

Geophysics[edit | edit source]

Seismic anisotropy is the variation of seismic wavespeed with direction. Seismic anisotropy is an indicator of long range order in a material, where features smaller than the seismic wavelength (e.g., crystals, cracks, pores, layers or inclusions) have a dominant alignment. This alignment leads to a directional variation of elasticity wavespeed. Measuring the effects of anisotropy in seismic data can provide important information about processes and mineralogy in the Earth; indeed, significant seismic anisotropy has been detected in the Earth's crust, mantle and inner core.

Geological formations with distinct layers of sedimentary material can exhibit electrical anisotropy; electrical conductivity in one direction (e.g. parallel to a layer), is different from that in another (e.g. perpendicular to a layer). This property is used in the gas and oil exploration industry to identify hydrocarbon-bearing sands in sequences of sand and shale. Sand-bearing hydrocarbon assets have high resistivity (low conductivity), whereas shales have lower resistivity. Formation evaluation instruments measure this conductivity/resistivity and the results are used to help find oil and gas wells.

The hydraulic conductivity of aquifers is often anisotropic for the same reason. When calculating groundwater flow to drains[2] or to wells,[3] the difference between horizontal and vertical permeability is to be taken into account otherwise the results may be subject to error.

Most common rock-forming minerals are anisotropic, including quartz and feldspar. Anisotropy in minerals is most reliably seen in their optical properties. An example of an isotropic mineral is garnet.

Medical acoustics[edit | edit source]

Anisotropy is also a well-known property in medical ultrasound imaging describing a different resulting echogenicity of soft tissues, such as tendons, when the angle of the transducer is changed. In diffusion tensor imaging, anisotropy alterations may reflect diffusion changes of water in the brain, particularly in the white matter.

Material science and engineering[edit | edit source]

Anisotropy, in Material Science, is a material’s directional dependence of a physical property. Most materials exhibit anisotropic behavior. An example would be the dependence of Young's modulus on the direction of load.[4] Anisotropy in polycrystalline materials can also be due to certain texture patterns which are often produced during manufacturing of the material. In the case of rolling, "stringers" of texture are produced in the direction of rolling, which can lead to vastly different properties in the rolling and transverse directions. Some materials, such as wood and fibre-reinforced composites are very anisotropic, being much stronger along the grain/fibre than across it. Metals and alloys tend to be more isotropic, though they can sometimes exhibit significant anisotropic behaviour. This is especially important in processes such as deep-drawing.

Microfabrication[edit | edit source]

Anisotropic etching techniques (such as Deep reactive ion etching) are used in microfabrication processes to create well defined microscopic features with a high aspect ratio. These features are commonly used in MEMS and microfluidic devices, where the anisotropy of the features is needed to impart desired optical, electrical, or physical properties to the device. Anisotropic etching could also refer to certain chemical etchants which are etching a certain material preferentially over certain crystallographic planes (e.g., KOH etching of Silicon [100] produces pyramid-like structures)

References[edit | edit source]

  1. 'Axis of evil' a cause for cosmic concern - space - 13 April 2007 - New Scientist Space
  2. R.J.Oosterbaan, 1997, The energy balance of groundwater flow applied to subsurface drainage in anisotropic soils by pipes or ditches with entrance resistance. On line: [1]. The corresponding free EnDrain program can be downloaded from: [2].
  3. R.J.Oosterbaan, 2002, Subsurface drainage by (tube)wells, 9 pp. On line: [3]. The corresponding free WellDrain program can be downloaded from: [4]
  4. Kocks, U.F. (2000). Texture and Anisotropy: Preferred Orientations in Polycrystals and their effect on Materials Properties. Cambridge. ISBN 9780521794206.