Structural Biochemistry/Water Gas Reaction

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Water gas reaction happens at elevated temperatures and pressures between water and carbon (usually coke or coal):

H2O + C -> H2 + CO

The product of this is called synthesis gas and can be extremely useful in bonding with metallic heterogeneous catalysts. For example, in the Fischer-Trospsch process, transition metals are used as catalysts to speed up these reactions like H2 + CO -> Alkanes with Co as the catalyst. 3H2 + CO -> CH4 + H2O with Ni as a catalyst. 2H2 + CO -> CH3OH with Zn/Cu as a catalyst. Ni catalyst is used in a process called steam reforming where methane is mixed with steam at high temperature to create hydrogen gas and carbon monoxide.

Some examples are:

Methane: CH4 + H2O (+heat) → CO + 3H2

Propane: C3H8 + 3H2O (+heat) → 3CO + 7H2

Ethanol: C2H5OH + H2O (+heat) → 2CO + 4H2

Gasoline: C8H18 + 8H2O (+heat) → 8CO + 17H2 C7H8 + 7H2O (+heat) → 7CO + 11H2


In a water gas shift reaction, CO + H2O -> CO2 + H2 with the addition of Zn-Cu as the catalyst. This reaction is thermodynamically favorable at about 400 degrees Celsius.

References[edit | edit source]

http://www1.eere.energy.gov/hydrogenandfuelcells/production/natural_gas.html Miessler, Gary. Inorganic Chemistry. 4th Edition.