Partial Differential Equations/Fundamental solutions, Green's functions and Green's kernels

From Wikibooks, open books for an open world
Jump to: navigation, search
Partial Differential Equations
 ← Distributions Fundamental solutions, Green's functions and Green's kernels Poisson's equation → 

In the last two chapters, we have studied test function spaces and distributions. In this chapter we will demonstrate a method to obtain solutions to linear partial differential equations which uses test function spaces and distributions.

Fundamental Solutions[edit]

In the last chapter, we had defined multiplication of a distribution with a smooth function and derivatives of distributions. Therefore, for a distribution \mathcal T, we are able to calculate such expressions as

a \cdot \partial_\alpha \mathcal T

for a smooth function a: \mathbb R^d \to \mathbb R and a d-dimensional multiindex \alpha \in \mathbb N_0^d. We therefore observe that in a linear partial differential equation of the form

\forall x \in \Omega : \sum_{\alpha \in \mathbb N_0^d} a_\alpha(x) \partial_\alpha u(x) = f(x)

we could insert any distribution \mathcal T instead of u in the left hand side. However, equality would not hold in this case, because on the right hand side we have a function, but the left hand side would give us a distribution (as finite sums of distributions are distributions again due to theorem 4.?; remember that only finitely many a_\alpha are allowed to be nonzero). If we however replace the right hand side by \mathcal T_f (the regular distribution corresponding to f), then there might be distributions \mathcal T which satisfy the equation. In this case, we speak of a distributional solution. Let's summarise this definition in a box.

Definition 5.?:

Let O \subseteq \mathbb R^d be open, let

\forall x \in O : \sum_{\alpha \in \mathbb N_0^d} a_\alpha(x) \partial_\alpha u(x) = f(x)

be a linear partial differential equation, and let \mathcal T \in \mathcal D(O)^*. \mathcal T is called a distributional solution to the above linear partial differential equation iff

\forall \varphi \in \mathcal D(O) : \sum_{\alpha \in \mathbb N_0^d} a_\alpha \partial_\alpha \mathcal T(\varphi) = \mathcal T_f (\varphi)

Now we will show how we can obtain distributional solutions to a partial differential equation. The method of choice will be to guess a so-called fundamental solution and then construct solutions with the help of that fundamental solution.

Definition 5.?:

Let O \subseteq \mathbb R^d be open and let

\forall x \in O : \sum_{\alpha \in \mathbb N_0^d} a_\alpha(x) \partial_\alpha u(x) = 0

be a linear homogenous partial differential equation. If F : O \to \mathcal D(O)^* has the two properties

  1. \forall \varphi \in \mathcal D(O) : x \mapsto F(x)(\varphi) \text{ is continuous}
  2. \forall x \in O : F(x) \text{ is a solution to } \forall \varphi \in \mathcal D(O) : \sum_{\alpha \in \mathbb N_0^d} a_\alpha \partial_\alpha F(x)(\varphi) = \delta_x(\varphi)

, we call F a fundamental solution.

Now why we defined this is: Once we have a fundamental solution for the homogenous equation (i. e. f = 0), we can easily construct solutions to the inhomogenous problem. We shall now explain how this works.

Lemma 5.?:

Let \{\mathcal T_\lambda : \lambda \in \mathcal I\} \subseteq \mathcal D(O)^* be a family of distributions, where \mathcal I \subseteq \mathbb R^d. Let's further assume that for all \varphi \in \mathcal A, the function \lambda \mapsto T_\lambda(\varphi) is continuous on \Lambda and bounded, and let f \in L^1(\Lambda). Then

T(\varphi) := \int_\Lambda f(\lambda) T_\lambda(\varphi) d \lambda

is a distribution.

Proof: Due to the truncation of L^p-functions, we have that there are radii R_i \in \R_+ such that

\int_{\Lambda \setminus B_{R_i}(0)} | f(\lambda) | d\lambda < \frac{1}{2 i \|T_\lambda(\varphi)\|_\infty}

, where \|T_\lambda(\varphi)\|_\infty is the supremum of the function \lambda \mapsto T_\lambda(\varphi).

B_{R_i}(0) is a compact set, since it is bounded as well as closed. Therefore, we may divide B_{R_i}(0) into finitely many (let's say n_i) squares d_{m_i} with diameter at most \delta_i, such that

\forall \nu \in B_{R_i}(0) : \lambda \in B_{\delta_i} (\nu) \Rightarrow |T_\lambda(\varphi) - T_\nu(\varphi)| < \frac{1}{2i \|f\|_{L^1}}

. This we may do because continuous functions are uniformly continuous on compact sets. At the border, we just round the squares so that they fit in with the sphere. Furthermore, we choose for each square a \lambda_{m_i} inside this square.

We choose now

T_i(\varphi) := \sum_{m=0}^{n_i} \int_{d_{m_i}} f(\lambda) T_{\lambda_{m_i}}(\varphi) d \lambda

, which is a finite linear combination of distributions and therefore a distribution. Due to the normal triangle inequality for the absolute value, the triangle inequality for the Lebegue integral, our first calculation and the fundamental integral estimation, we obtain:

|T_i(\varphi) - T(\varphi)| < \sum_{m=0}^{n_i} \int_{d_{m_i}} | f(\lambda) (T_{\lambda_{m_i}}(\varphi) - T_\lambda(\varphi))| d \lambda + \frac{\|T_\lambda(\varphi)\|_\infty}{2 i \|T_\lambda(\varphi)\|_\infty} \le \frac{1}{i}

This obviously goes to zero, and this lemma follows with Lemma 2.1.

Let's assume that in equation (*), f is integrable. Let K_{(\cdot)} be a fundamental solution for (*) with respect to the locally convex normed function space \mathcal A, such that \forall \phi \in \mathcal A, the function \xi \mapsto K_\xi(\phi) is bounded. Then we can know, that:

T(\varphi) = \int_{\R^d} f(\xi) K_\xi(\varphi) d\xi

is well-defined and solves (*) in the sense of distributions.

Proof: Since by the definition of fundamental solutions, the function \xi \mapsto K_\xi(\phi) is continuous, we may apply lemma 2.2, which gives us that T is indeed well-defined.

To show that it really solves (*) in the sense of distributions, we need the following calculation:

LT(\varphi) = T(L^*\varphi) = \int_{\R^d} f(\xi) K_\xi(L^* \varphi) d\xi = \int_{\R^d} f(\xi) LK_\xi(\varphi) d\xi
 = \int_{\R^d} f(\xi) \delta_\xi(\varphi) d\xi = \int_{\R^d} f(\xi) \varphi(\xi) d\xi = T_f(\varphi)

, which is what we wanted to show.

Green's functions[edit]

Assume that for each \xi, the fundamental solution K_\xi is a regular distribution, i. e. for each \xi \in \Omega, there is an integrable function G( \cdot| \xi) such that K_\xi = T_{G(\cdot | \xi)}. Then we call this function G: \R^d \times \Omega \to \R a Green's function for L.

Green's kernels[edit]

Let's assume that L has the Green's function G(\cdot|\xi). If there exists a function \tilde G: \R^d \to \R such that

G(\cdot|\xi) = \tilde G(\cdot - \xi)

, then we call \tilde G a Green's kernel for L.

Let \tilde G be a locally integrable function, and \Omega \subseteq \R^d be a domain. Then the family of distributions K_\xi := T_{\tilde G(\cdot - \xi)} \in \mathcal D'(\Omega) is well-defined and depends continuously on \xi. Furthermore, for each \phi \in \mathcal D(\Omega), the function \xi \mapsto K_\xi(\phi) is bounded.

Proof: Well-definedness follows from Lemma 1.3.

Let \phi \in \mathcal D(\Omega), and let \xi_n \to \xi. Then we can calculate the following:

T_{\tilde G(\cdot - \xi_n)}(\phi) - T_{\tilde G(\cdot - \xi)}(\phi) = \int_{\R^d} \tilde G(x - \xi_n) \phi(x) dx - \int_{\R^d} \tilde G(x - \xi) \phi(x) dx = \int_{\R^d} \tilde  G(x) (\phi(x + \xi_n) - \phi(x + \xi)) dx
\le \max_{x \in \R^d} |\phi(x + \xi_n) - \phi(x + \xi)| \underbrace{\int_{\text{supp } \phi + B_{2\xi}(0)} \tilde  G(x) dx}_\text{constant}

for sufficiently large n, where the last expression goes to 0 as n \to \infty, since the support of \phi(x) is compact and therefore the function is (even uniformly) continuous.

Furthermore, we have

T_{\tilde G(\cdot - \xi)}(\phi) = \int_{\R^d} \tilde G(x - \xi) \phi(x) dx = \int_{\text{supp } \phi} \tilde G(x) \phi(x + \xi) dx

, which is zero for \|\xi\| sufficiently large, which is why the function \xi \mapsto K_\xi(\phi) has compact support. But since the function is also continuous, we know that it obtains a maximum and a minimum and is therefore bounded.

This lemma shows that if we have found a locally integrable function \tilde G such that LT_{\tilde G(\cdot - \xi)} = \delta_\xi, we already know that it is a Green's kernel, and don't need to check the continuity property.

Theorem 5.?: (Fubini's theorem)

Let A \subseteq \mathbb R^i and B \subseteq \mathbb R^j, where i, j are arbitrary natural numbers, and let f: A \times B \to \mathbb R be a function. Then

\int_A \int_B f(x, y) dy dx = \int_{A \times B} f(x, y) d(x, y) = \int_B \int_A f(x, y) dx dy

Now this theorem finally shows us why distributions are useful:

Let \tilde G be a Green's kernel for L, and let f \in L^\infty(\R^d). If

u(x) = (f * \tilde G)(x)

is sufficiently often differentiable such that L u is continuous, then it is a solution for (*) in the classical sense.

Proof: From a case of Hölder's inequality (namely p = 1, q = \infty, i. e. \|f \cdot \tilde G\|_{L^1} \le \|\tilde G\|_{L^1} \cdot \|f\|_{L^\infty}), we obtain that u is locally integrable, which is why T_u is a distribution in \mathcal D'(\R^d).

Furthermore, due to the theorem of Fubini, we have for \varphi \in \mathcal D(\R^d), that

T_u(\varphi) = \int_{\R^d} (f * \tilde G)(x) \varphi(x) dx = \int_{\R^d} \int_{\R^d} f(y) \tilde G(x - y) \varphi(x) dy dx
 = \int_{\R^d} \int_{\R^d} \tilde G(x - y) \varphi(x) dx ~ f(y) dy = \int_{\R^d} T_{\tilde G(\cdot - \xi)}(\varphi) f(y) dy

, which is why T_u solves (*) in the sense of distributions (this is due to theorem 2.3).

Thus, for all \varphi \in \mathcal D(\R^d), we can calculate the following:

\int_{\R^d} (Lu)(x) \varphi(x) dx = T_{Lu} (\varphi) = LT_u(\varphi) = T_f(\varphi) = \int_{\R^d} f(x) \varphi(x) dx

and therefore

\int_{\R^d} ((Lu)(x) - f(x)) \varphi(x) dx = 0.

From this follows that Lu = f almost everywhere. But since Lu and f are both continuous, they must be equal everywhere. This is what we wanted to prove.



Partial Differential Equations
 ← Distributions Fundamental solutions, Green's functions and Green's kernels Poisson's equation →