High School Calculus/Trigonometric Integrals

From Wikibooks, open books for an open world
< High School Calculus
Jump to: navigation, search

Trigonometric Integrals[edit]

There are a few different types of integrals using trigonometric functions. I will split it into a few different sections. Those involving sine, cosine, and tangent. From there I will cover cotangent, secant, and cosecant. Then I will cover the inverse functions, functions involving e, ln, and finally hyperbolic functions.

Something to keep in mind is that the variable used in these functions are denoted by u. (see substitution section)

\sin u \cos u \tan u[edit]

\int \sin u \operatorname {d}u = - \cos u + C

\int \cos u \operatorname {d}u = \sin u + C

\int \tan u \operatorname {d}u = - \ln \left \vert \cos u \right \vert + C

\int \sin^2 u \operatorname {d} u = \frac {1}{2}(u - \sin u \cos u) + C

\int \cos^2 u \operatorname {d} u = \frac {1}{2}(u + \sin u \cos u) + C

\int \tan^2 u \operatorname {d}u = -u + \tan u + C

 \int \sin^k u \operatorname {d}u = - \frac{\sin^{k-1}u \cos u}{k} + \frac {k-1}{k}  \int \sin^{k-2} u \operatorname {d}u

\int \cos^k u \operatorname {d}u = \frac{\cos^{k-1} u \sin u}{k} + \frac {k-1}{k} \int \cos^{k-2} u \operatorname {d}u

\int \tan^k u \operatorname {d}u = \frac {\cos^{k-1} u \sin u}{k} + \frac {k-1}{k} \int \cos^{k-2} u \operatorname {d}u

\int u \sin u \operatorname {d}u = \sin u - u \cos u + C

\int u \cos u \operatorname {d}u = \cos u + u \sin u + C

\int u^k \sin u \operatorname {d}u = -u^k \cos u + k \int u^{k-1} \cos u \operatorname {d}u

\int u^k \cos u \operatorname {d}u = u^k \sin u - k \int u^{k-1} \sin u \operatorname {d}u

\int \frac {1}{1 \pm \sin u} \operatorname {d}u = \tan u \pm \sec u + C

\int \frac {1}{1 \pm \cos u} \operatorname {d}u = - \cot u \pm \csc u + C

\int \frac{1}{1 \pm \tan u} \operatorname {d}u = \frac {1}{2} (u \pm \ln \left \vert \cos u \pm \sin u \right \vert) + C

\int \frac {1}{\sin u \cos u} \operatorname {d}u = \ln \left \vert \tan u \right \vert + C

\cot u \sec u \csc u[edit]

\int \cot u \operatorname {d}u = \ln \left \vert \sin u \right \vert + C

\int \sec u \operatorname {d}u = \ln \left \vert \sec u + \tan u \right \vert + C

\int \csc u \operatorname {d}u = \ln \left \vert \csc u - \cot u \right \vert + C

\int \cot^2 u \operatorname {d}u = -u - \cot u + C

\int \sec^2 u \operatorname {d}u = \tan u + C

\int \csc^2 u \operatorname {d}u = - \cot u + C

\int \cot^k u \operatorname {d}u = - \frac {\cot^{k-1} u}{k-1} \int \cot^{k-2} u \operatorname {d}, k \neq 1

\int \sec^k u \operatorname {d}u = \frac {\sec^{k-2} u \tan u}{k-1} + \frac {k-2}{k-1} \int \sec^{k-2} u \operatorname {d}u, l \neq 1

\int \csc^k u \operatorname {d}u = - \frac {\csc^{k-2} u \tan u}{k-1} + \frac {k-2}{k-1} \int \csc^{k-2} u \operatorname {d}u, k /neq 1

\int \frac {1}{1 \pm \cot u} \operatorname {d}u = \frac {1}{2}(u \mp \ln \left \vert \sin u \pm \cos u \right \vert) + C

\int \frac {1}{1 \pm \sec u} \operatorname {d}u = u + \cot u \mp \csc u + C

\int \frac {1}{1 \pm \csc} \operatorname {d}u = u - \tan u \pm \sec u + C

Inverse Trig Functions[edit]

\int \arcsin u \operatorname {d}u = u \arcsin u + \sqrt {1 - u^2} + C

\int \arccos u \operatorname {d}u = u \arccos u - \sqrt {1 - u^2} + C

\int \arctan u \operatorname {d}u = u \arctan u - \ln \sqrt {1 + u^2} + C

\int \arccot u \operatorname {d}u = u \arccot u + \ln \sqrt {1 + u^2} + C

\int \arcsec u \operatorname {d}u = u \arcsec u + \ln \left \vert u + \sqrt {u^2 -1} \right\vert + C

\int ]arccsc u \operatorname {d}u = u \arccsc u + \ln \left \vert u + \sqrt {u^2 - 1} \right \vert + C

e^u[edit]

\int e^u \operatorname {d}u = e^u + C

\int u e^u \operatorname {d}u = (u-1)e^u + C

\int u^k e^u \operatorname {d}u = k \int u^{k-1} e^u \operatorname {d}u

\int \frac {1}{1 + e^u} \operatorname {d}u - u - \ln (1 + e^u) + C

\int e^{au} \sin bu \operatorname {d}u = \frac {e^{au}}{a^2 + b^2} (a \sin bu - b \cos bu) + C

\int e^{au} \cos bu \operatorname {d}u = \frac {e^{au}}{a^2 + b^2}(a \cos bu + b \sin bu) + C

\ln u[edit]

\int ]ln u \operatorname {d}u = u(-1 + \ln u) + C

\int u \ln u \operatorname {d}u = \frac {u^2}{4}(-1 + 2 \ln u) + C

\int u^k \ln u \operatorname {d}u = \frac {e^{au}}{a^2 + b^2}(a \cos bu + b \sin bu) + C

\int (\ln u)^2 \operatorname {d}u = u [2 -2 \ln u + (\ln u)^2] + C

\int (\ln u)^k \operatorname {d}u = u (\ln u)^k - k \int (\ln u)^{k-1} \operatorname {d}u

Hyperbolic Functions[edit]

\int \cosh u \operatorname {d}u = \sinh u + C

\int \sinh u \operatorname {d}u = \cosh u + C

\int \operatorname {sech}^2 u \operatorname {d}u = \tanh u + C

\int \operatorname {csch}^2 u \operatorname {d}u = - \coth u + C

\int \operatorname {sech} u \tan u \operatorname {d}u = - \operatorname {sech}u + C

\int \operatorname {csch}u \coth u \operatorname {d}u = - \operatorname {csch}u + C