General Chemistry/The Quantum Model

From Wikibooks, open books for an open world
Jump to: navigation, search

Uncertainty[edit]

Werner Heisenberg (1927)

It turns out that photons are not the only thing that act like waves and particles. Electrons, too, have this dual characteristic. Electrons can be thought of as waves of a certain length, thus they would only be able to form a circle around the nucleus at certain distances. Of course, this brings up a problem: are electrons particles in a specific location, or waves in a general area? Werner Heisenberg tried using photons to locate electrons. Of course, when photons reach electrons, the electrons change velocity, and move to an excited state. As a result, it is impossible to know the velocity and location of an electron at the same time. This is known as the Heisenberg uncertainty principle. The Heisenberg uncertainty principle is a kind of scientific dilemma: the more you know about something's velocity, the less you know about its position; and the more you know about its position, the less you know about its velocity. The significance of this uncertainty is that you can never know exactly where an atom's electrons are.

A wave forming a circle

On the tiny scale of an atom, the particle model of an electron does not accurately describe its properties. An electron tends to act more like a water wave than a billiard ball. At any one moment in time the ball is in some definite place; it is also moving in some definite direction at a definite speed. This is certainly not true for waves or electrons in general. The Heisenberg uncertainty principle states that the exact position and momentum of an electron cannot be simultaneously determined. This is because electrons simply don't have a definite position, and direction of motion, at the same time!

One way to try to understand this is to think of an electron not as a particle but as a wave. Think of dropping a stone into a pond. The ripples start to spread out from that point. We can answer the question "Where is the wave?" with "It's where you plonked the stone in". But we can't answer the question "What direction is the wave moving?" because it's moving in all directions. It's spreading out. Now think of a wave at the seaside. We know the direction of motion. It's straight in towards the beach. But where is the wave? We can't pinpoint an exact location. It's all along the water.

The Wave Function[edit]

Think of the wave equation like a sprinkler—you cannot predict the exact path of a particular water droplet, but you do know (based on the range and shape of the sprinkler) where it is most likely to go.

If we can never know exactly where an electron is, then how do we keep track of them as they orbit atoms? Erwin Schrödinger made the concept of the Schrödinger Wave Function. It tells the probability of an electron being found at a given position. You don't know where the electron is, but you know where it is most likely and least likely to be found. The electron could be anywhere, but it is probably going to be a certain distance from the atom, staying within a certain shape.

Orbitals[edit]

In the following sections, we will learn about the shells, subshells, and orbitals that the electrons are in. Try not to get confused; it can be difficult. Understanding this information will help you to learn about bonding, which is very important.

In essence, each electron orbiting an atom has a set of four numbers that describe it. Those four numbers, called quantum numbers, tell us how far away the electron is, what shape of path it is likely to follow, and which direction its orbit goes. Each electron in an atom has a unique set of numbers, and the numbers can change if bonding occurs or an electron is energized into a higher-energy orbit. In the next chapter, we will learn the exact meaning of those four values and how they affect the path the electron follows.